Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Baker, Daniel; Meese, Timothy (2012)
Publisher: Elsevier BV
Journal: Vision Research
Languages: English
Types: Article
Subjects: 2731, 2809, Ophthalmology, Sensory Systems

Classified by OpenAIRE into

mesheuropmc: genetic structures, eye diseases
Adapting one eye to a high contrast grating reduces sensitivity to similar target gratings shown to the same eye, and also to those shown to the opposite eye. According to the textbook account, interocular transfer (IOT) of adaptation is around 60% of the within-eye effect. However, most previous studies on this were limited to using high spatial frequencies, sustained presentation, and criterion-dependent methods for assessing threshold. Here, we measure IOT across a wide range of spatiotemporal frequencies, using a criterion-free 2AFC method. We find little or no IOT at low spatial frequencies, consistent with other recent observations. At higher spatial frequencies, IOT was present, but weaker than previously reported (around 35%, on average, at 8c/deg). Across all conditions, monocular adaptation raised thresholds by around a factor of 2, and observers showed normal binocular summation, demonstrating that they were not binocularly compromised. These findings prompt a reassessment of our understanding of the binocular architecture implied by interocular adaptation. In particular, the output of monocular channels may be available to perceptual decision making at low spatial frequencies.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, P. A., & Movshon, J. A. (1989). Binocular combination of contrast signals. Vision Res, 29: 1115-32.
    • Baker, D. H., Meese, T. S., Mansouri, B., & Hess, R. F. (2007). Binocular summation of contrast remains intact in strabismic amblyopia. Invest Ophthalmol Vis Sci, 48: 5332-5338.
    • Bjørklund, R. A., & Magnussen, S. (1981). A study of interocular transfer of spatial adaptation. Perception, 10: 511-8.
    • Blake, R., & Cormack, R. H. (1979). On utrocular discrimination. Perception & Psychophysics, 26: 53-68.
    • Blake, R., Overton, R., & Lema-Stern, S. (1981). Interocular transfer of visual aftereffects. J Exp Psychol Hum Percept Perform, 7: 367-81.
    • Blakemore, C., & Campbell, F. W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol, 203: 237- 60.
    • Campbell, F. W., & Green, D. G. (1965). Monocular Versus Binocular Visual Acuity. Nature, 208: 191-192.
    • Cass, J., Johnson, A. M., Bex, P. J., & Alais, D. (2012). Orientation-specificity of adaptation within and between the eyes. PLoS One, forthcoming.
    • Falconbridge, M., Ware, A., & MacLeod, D. I. A. (2010). Imperceptibly rapid contrast modulations processed in cortex: Evidence from psychophysics. J Vis, 10(8): art. 21. doi:10.1167/10.8.21
    • Finney, D. J. (1971). Probit Analysis. Cambridge University Press.
    • Fiorentini, A., Sireteanu, R., & Spinelli, D. (1976). Lines and gratings: different interocular after-effects. Vision Res, 16: 1303-9.
    • Georgeson, M. A. (1976). Psychophysical hallucinations of orientation and spatial frequency. Perception, 5: 99- 111.
    • Georgeson, M. A., & Meese, T. S. (2007). Binocular combination at threshold: temporal filtering and summation of signals in separate ON and OFF channels. Perception, 36(S): 60.
    • Gilinsky, A. S., & Doherty, R. S. (1969). Interocular transfer of orientational effects. Science, 164: 454-5.
    • Graham, N. V. S. (1989). Visual Pattern Analyzers. Oxford University Press.
    • Greenlee, M.W., Georgeson, M.A., Magnussen, S. & Harris, J.P. (1991). The time course of adaptation to spatial contrast. Vision Res, 31: 223- 236.
    • Hanly, M. & MacKay, D.M. (1979). Polaritysensitive perceptual adaptation to temporal sawtooth modulation of luminance. Exp Brain Res, 35: 37-46.
    • Hess, R. F. (1978). Interocular transfer in individuals with strabismic amblyopia; a cautionary note. Perception, 7: 201-5.
    • Legge, G. E. (1979). Spatial frequency masking in human vision: binocular interactions. J Opt Soc Am, 69: 838- 847.
    • Legge, G. E. (1984). Binocular contrast summation-I. Detection and discrimination. Vision Res, 24: 373- 383.
    • Lema, S. A., & Blake, R. (1977). Binocular summation in normal and stereoblind humans. Vision Res, 17: 691-695.
    • Levi, D. M., Harwerth, R. S., & Smith III, E. L. (1980). Binocular interactions in normal and anomalous binocular vision. Doc Ophthalmol, 49: 303-24.
    • Medina, J. M., & Mullen, K. T. (2009). Crossorientation masking in human color vision. J Vis, 9(3): art. 20.1-16. doi:10.1167/9.3.20
    • Meese, T. S., & Baker, D. H. (2009). Crossorientation masking is speed invariant between ocular pathways but speed dependent within them. Journal of Vision, 9(5): 2, 1-15.
    • Meese, T. S., & Baker, D. H. (2011). A reevaluation of achromatic spatiotemporal vision: nonoriented filters are monocular, the adapt, and can be used for decision making at high flicker speeds. iPerception, 2: 159- 182.
    • Meese, T. S., Georgeson, M. A., & Baker, D. H. (2006). Binocular contrast vision at and above threshold. J Vis, 6: 1224-1243.
    • Meese, T. S., & Holmes, D. J. (2002). Adaptation and gain pool summation: alternative models and masking data. Vision Res, 42: 1113-1125.
    • Meese, T. S., & Holmes, D. J. (2007). Spatial and temporal dependencies of crossorientation suppression in human vision. Proc R Soc B, 274: 127-36.
    • Merigan, W. H., Katz, L. M., & Maunsell, J. H. (1991). The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci, 11: 994-1001.
    • Nishida, S., Ashida, H., & Sato, T. (1994). Complete interocular transfer of motion aftereffect with flickering test. Vision Res, 34: 2707-16.
    • Selby, S. A., & Woodhouse, J. M. (1981). The spatial frequency dependence of interocular transfer in amblyopes. Vision Res, 21: 1401-8.
    • Sloane, M., & Blake, R. (1984). Selective adaptation of monocular and binocular neurons in human vision. J Exp Psychol Hum Percept Perform, 10: 406-12.
    • Smith, R. A. (1971). Studies of temporal frequency adaptation in visual contrast sensitivity. J Physiol, 216: 531-52.
    • Snowden, R., & Hammett, S. (1996). Spatial frequency adaptation: threshold elevation and perceived contrast. Vision Res, 36: 1797-1809.
    • Timney, B., Symons, L. A., Wilcox, L. M., & O'Shea, R. P. (1996). The effect of dark and equiluminant occlusion on the interocular transfer of visual aftereffects. Vision Res, 36: 707-15.
    • Wade, N. J., Swanston, M. T., & de Weert, C. M. (1993). On interocular transfer of motion aftereffects. Perception, 22: 1365-80.
    • Webster, M.A. (2011). Adaptation and visual coding. J Vis, 11(5): art 3.
    • Wolfe, J. M. (1986). Stereopsis and binocular rivalry. Psychol Rev, 93: 269-82.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article