LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Delanoe, Julien; Hogan, Robin J. (2010)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Astrophysics::Galaxy Astrophysics
In this paper, data from spaceborne radar, lidar and infrared radiometers on the “A-Train” of satellites are combined in a variational algorithm to retrieve ice cloud properties. The method allows a seamless retrieval between regions where both radar and lidar are sensitive to the regions where one detects the cloud. We first implement a cloud phase identification method, including identification of supercooled water layers using the lidar signal and temperature to discriminate ice from liquid. We also include rigorous calculation of errors assigned in the variational scheme. We estimate the impact of the microphysical assumptions on the algorithm when radiances are not assimilated by evaluating the impact of the change in the area-diameter and the density-diameter relationships in the retrieval of cloud properties. We show that changes to these assumptions affect the radar-only and lidar-only retrieval more than the radar-lidar retrieval, although the lidar-only extinction retrieval is only weakly affected. We also show that making use of the molecular lidar signal beyond the cloud as a constraint on optical depth, when ice clouds are sufficiently thin to allow the lidar signal to penetrate them entirely, improves the retrieved extinction. When infrared radiances are available, they provide an extra constraint and allow the extinction-to-backscatter ratio to vary linearly with height instead of being constant, which improves the vertical distribution of retrieved cloud properties.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anselmo, T., R. Clifton, W. Hunt, K. Lee, T. Murray, K. Powell, O. Chomette, M. Viollier, A. Garnier, and J. Pelon (2006), Cloud Aerosol LIDAR Infrared Pathfinder Satellite Observations (CALIPSO). Data Management System and Data Products Catalog, CALIPSO doc., rel. 2.3, Doc. PCSCI‐503.
    • Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1992), Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined raman elastic‐backscatter lidar, Appl. Opt., 33, 7113-7131.
    • Baran, A. J. (2003), Simulation of infrared scattering from ice aggregates by use of a size‐shape distribution of circular ice cylinders, Appl. Opt., 42, 2811-2818.
    • Benedetti, A. (2005), CloudSat AN‐ECMWF ancillary data interface control document, technical document, CloudSat Data Proc. Cent., Fort Collins, Colo., 16 July. (Available at http://cloudsat.cira.colostate.edu/ ICD/AN‐ECMWF/AN‐ECMWF_doc_v4.pdf).
    • Benedetti, A., G. L. Stephens, and J. M. Haynes (2003), Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approach, J. Geophys. Res., 108(D11), 4335, doi:10.1029/2002JD002693.
    • Brown, P. R. A., and P. N. Francis (1995), Improved measurements of the ice water content in cirrus using a total‐water probe, J. Atmos. Oceanic. Technol., 12, 410-414.
    • Cadet, B., V. Giraud, M. Haeffelin, P. Keckhut, A. Rechou, and S. Baldy (2005), Improved retrievals of the optical properties of cirrus clouds by a combination of lidar methods, Appl. Opt., 44, 1726-1734.
    • Chen, W.‐N., C.‐W. Chiang, and J.‐B. Nee (2002), Lidar ratio and depolarization ratio for cirrus clouds, Appl. Opt., 41, 6470-6476.
    • Chiriaco, M., H. Chepfer, V. Noel, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang (2004), Improving retrievals of cirrus cloud particle size coupling lidar and three‐channel radiometric techniques, Mon. Weather Rev., 132, 1684-1700.
    • Cooper, S. J., T. S. L'Ecuyer, and G. L. Stephens (2003), The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances, J. Geophys. Res., 108(D3), 4107, doi:10.1029/2002JD002611.
    • Cooper, S. J., T. S. L'Ecuyer, P. M. Gabriel, A. J. Baran, and G. L. Stephens (2006), Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans. Part II: Ice clouds, J. Appl. Meteorol., 45, 42-62.
    • Delanoë, J., and R. J. Hogan (2008a), A variational scheme for retrieving ice cloud properties from combined radar, lidar and infrared radiometer, J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.
    • Delanoë, J., and R. J. Hogan (2008b), Algorithm Theoretical Basis Document for ACM‐Ice‐Reading (variational radar‐lidar‐radiometer ice cloud retrieval), Contract 20990/07/NL/EL, ESTEC, Eur. Space Agency, Noordwijk, Netherlands. (Available at http://www.met.reading.ac.uk/ clouds/other_reports.html)
    • Delanoë, J., A. Protat, J. Testud, D. Bouniol, A. J. Heymsfield, A. Bansemer, P. R. A. Brown, and R. M. Forbes (2005), Statistical properties of the normalized ice particle size distribution, J. Geophys. Res., 110, D10201, doi:10.1029/2004JD005405.
    • Delanoë, J., A. Protat, J. Testud, D. Bouniol, A. J. Heymsfield, A. Bansemer, and P. R. A. Brown (2007), The characterization of ice clouds properties from Doppler radar measurements, J. Appl. Meteorol. Climatol., 46, 1682-1698, doi:10.1175/JAM2543.1.
    • Donovan, D. P., A. C. A. P. van Lammeren, H. W. J. Russchenberg, A. Apituley, R. J. Hogan, P. N. Francis, J. Testud, J. Pelon, M. Quante, and J. W. F. Goddard (2001), Cloud effective particles size and water content profile retrievals using ombined radar and lidar observations: 2. Comparison with IR radiometer and in‐situ measurements of ice clouds, J. Geophys. Res., 106, 27,449-27,464.
    • ESA (2004), EarthCARE: Earth Clouds, Aerosols and Radiation Explorer, SP‐1279(1), ESTEC, Eur. Space Agency, Noordwijk, Netherlands.
    • Foot, J. S. (1988), Some observations of the optical properties of clouds: 2. Cirrus, Quart. J. R. Meteorol. Soc., 114, 145-1647.
    • Francis, P. N., P. Hignett, and A. Macke (1998), The retrieval of cirrus cloud properties from aircraft multi‐spectral reflectance measurements during EUCREX'93, Quart. J. R. Meteorol. Soc., 124, 1273-1291.
    • Hitchfeld, W. F., and J. Bordan (1954), Errors inherent in the radar measurement of rainfall at attenuating wavelengths, J. Meteorol., 11, 58-67.
    • Hogan, R. J. (2006), Fast approximate calculation of multiply scattered lidar returns, Appl. Opt., 45, 5984-5992.
    • Hogan, R. J., and E. J. O'Connor (2004), Facilitating cloud radar and lidar algorithms: The Cloudnet Instrument Synergy/Target Categorization product, Cloudnet documentation, Dept. of Meteorol. Univ. of Reading, U. K. (Available at http://www.met.rdg.ac.uk/clouds/publications/ categorization.pdf)
    • Hogan, R. J., P. N. Francis, H. Flentje, A. J. Illingworth, M. Quante, and J. Pelon (2003a), Characteristics of mixed‐phase clouds: Part I. Lidar, radar and aircraft observations from CLARE'98, Quart. J. R. Meteorol. Soc., 129, 2089-2116.
    • Hogan, R. J., A. J. Illingworth, E. J. O'Connor, and J. P. V. P. Baptista (2003b), Characteristics of mixed‐phase clouds: Part II. A climatology from ground‐based lidar, Quart. J. R. Meteorol. Soc., 129, 2117-2134.
    • Hogan, R. J., M. D. Behera, E. J. O'Connor, and A. J. Illingworth (2004), Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar, Geophys. Res. Lett., 31, L05106, doi:10.1029/2003GL018977.
    • Hogan, R. J., N. Gaussiat, and A. J. Illingworth (2005), Stratocumulus liquid water content from dual‐wavelength radar, J. Atmos. Oceanic. Technol., 22, 1207-1218.
    • Hogan, R. J., D. P. Donovan, C. Tinel, M. A. Brooks, A. J. Illingworth, and J. P. V. Poiares Baptista (2006a), Independent evaluation of the ability of spaceborne radar and lidar to retrieve the microphysical and radiative properties of ice clouds, J. Atmos Oceanic. Technol., 23, 211-227.
    • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth (2006b), The retrieval of ice water content from radar reflectivity factor and temperature and its use in the evaluation of a mesoscale model, J. Appl. Meteorol. Climatol., 45, 301-317.
    • Hu, Y., et al. (2009), CALIPSO/CALIOP cloud phase discrimination algorithm, J. Atmos. Oceanic. Technol., 26, 2293-2309, doi:10.1175/ 2009JTECHA1280.1.
    • Illingworth, A. J., et al. (2000), Quantification of the synergy aspects of the Earth Radiation Mission, final report, Contract 13167/98/NL/GD, ESTEC, Eur. Space Agency, Noordwijk, Netherlands. (Available at http://www. met.rdg.ac.uk/clouds/publications/synergy.pdf)
    • Illingworth, A. J., et al. (2007), Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground‐based observations, Bull. Am. Meteorol. Soc., 88, 883-898, doi:10.1175/BAMS-88-6-883.
    • Inoue, T. (1985), On the temperature and effective emissivity determination of semi‐transparent cirrus clouds by bispectral measurements in the 10 microns window region, J. Meteorol. Soc. Jpn., 63, 88-99.
    • King, M., S. Tsay, S. E. Platnick, M. Wang, and K. N. Liou (1998), Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase, ATBD Ref. ATBD‐MOD‐05, NASA, Washington, D. C.
    • Liu, C. L., and A. J. Illingworth (2000), Towards more accurate retrievals of ice water content from radar measurement of clouds, J. Appl. Meteorol., 39, 1130-1146.
    • Liu, Z., W. Hunt, M. Vaughan, C. Hostetler, M. McGill, K. Powell, D. Winker, and Y. Hu (2006), Estimating random errors due the shot noise in backscatter lidar observations, Appl. Opt., 45, 4437-4447.
    • Mace, G. G. (2004), Level 2 GEOPROF product process description and interface control document, v. 3, CloudSat documentation, CIRA, Colo. State Univ., Fort Collins, Colo.
    • Matrosov, S. Y., A. V. Korolev, and A. J. Heymsfield (2002), Profiling cloud ice mass and particle characteristic size from Doppler radar measurements, J. Atmos. Oceanic. Technol., 19, 1003-1018.
    • Mitchell, D. (2006), Use of mass‐ and area‐dimensional power laws for determining precipitation particle terminal velocity, J. Atmos. Sci., 53, 1710-1723.
    • Mitrescu, C., J. M. Haynes, G. L. Stephens, S. D. Miller, G. M. Heymsfield, and M. J. McGill (2005), Cirrus cloud optical, microphysical, and radiative properties observed during the crystal‐face experiment: A lidar‐radar retrieval system, J. Geophys. Res., 110, D09208, doi:10.1029/ 2004JD005605.
    • Morcrette, J.‐J. (2001), Assessment of the ECMWF model cloudiness and surface radiation fields at the ARM‐SGP site, ECMWF technical memorandum, Eur. Cent. for Medium‐Range Weather Forecasts, Reading, U. K.
    • Okamoto, H., S. Iwasaki, M. Yasui, H. Horie, H. Kuroiwa, and H. Kumagai (2003), An algorithm for retrieval of cloud microphysics using 95‐GHz cloud radar and lidar, J. Geophys. Res., 108(D7), 4226, doi:10.1029/ 2001JD001225.
    • Platt, C. M. R., S. C. Scott, and A. C. Dilley (1987), Remote sounding of high clouds ‐ 4. Optical properties of midlatitude and tropical cirrus, J. Atmos. Sci., 44, 729-747.
    • Platt, C. M. R., S. A. Young, R. T. Austin, G. R. Patterson, D. L. Mitchell, and S. D. Miller (2002), LIRAD Observations of tropical cirrus clouds in MCTEX: Part I. Optical properties and detection of small particles in cold cirrus, J. Atmos. Sci., 59, 3145-3162.
    • Protat, A., J. Delanoë, D. Bouniol, A. J. Heymsfield, A. Bansemer, and P. R. A. Brown (2007), Evaluation of ice water content retrievals from cloud radar reflectivity and temperature using a large airborne in‐situ microphysical database, J. Appl. Meteorol. Climatol., 46, 557-572.
    • Sakai, T., N. Orikasa, M. Murakami, K. Kusunoki, K. Mori, A. Hashimoto, T. Matsumura, and T. Shibata (2006), Optical and microphysical properties of upper clouds measured with the raman lidar and hydrometeor videosonde: A case study on 29 March 2004 over Tsukuba, Japan, J. Atmos. Sci., 63, 2156-2166.
    • Sassen, K. (1991), The polarization lidar technique for cloud research-a review and current assessment, Bull. Am. Meteorol. Soc., 72, 1848-1866.
    • Schmitt, C. G., J. Iaquinta, and A. J. Heymsfield (2006), The asymmetry parameter of cirrus clouds composed of hollow bullet rosette‐shaped ice crystals from ray‐tracing calculations, J. Appl. Meteorol. Climatol., 45, 973-981, doi:10.1175/JAM2384.1.
    • Shipley, S. T., D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman (1983), A high spectral resolution lidar to measure optical scattering properties of atmospheric aerosols: 1. Instrumentation and theory, Appl. Opt., 23, 3716-3724.
    • Stamnes, K., S. C. Tsay, W. Wiscombe, and K. Jayaweera (1988), Numerically stable algorithm for discrete‐ordinate‐method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502-2509.
    • Stephens, G. L., et al. (2002), The Cloudsat Mission and the A‐Train, Bull. Am. Meteorol. Soc., 83, 1771-1790.
    • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand (2008), CloudSat's cloud profiling radar after two years in orbit: Performance, calibration, and processing, IEEE Trans. Geosci. Remote Sens., 46, 3560-3573.
    • Thomas, L., J. Cartwright, and D. Wareing (1990), Lidar observations of the horizontal orientations of ice crystals in cirrus clouds, Tellus, Ser. B, 42, 211-216.
    • Tinel, C., J. Testud, R. J. Hogan, A. Protat, J. Delanoë, and D. Bouniol (2005), The retrieval of ice cloud properties from cloud radar and lidar synergy, J. Appl. Meteorol., 44, 860-875.
    • Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam (1989), Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94, 16,287-16,301.
    • Wang, Z., and K. Sassen (2002), Cirrus cloud microphysical property retrieval using idar and radar measurements: 1. Algorithm description and comparison with in situ data, J. Appl. Meteorol., 41, 218-229.
    • Winker, D. M., J. Pelon, and M. P. McCormick (2003), The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds, Proc. SPIE, 4893, 1-11.
    • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young (2009), Overview of the CALIPSO mission and CALIOP data processing algorithms, J. Atmos. Oceanic. Technol., 26, 2310-2323, doi:10.1175/2009JTECHA1281.1.
    • Young, S. A. (1995), Lidar analysis of lidar backscatter profiles in optically thin clouds, Appl. Opt., 34, 7019-7031.
    • J. Delanoë and R. J. Hogan, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading RG6 6BB, UK. (j.m.e.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article