Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Xia, D; Sanderson, SJ; Jones, AR; Prieto, JH; Yates, JR; Bromley, E; Tomley, FM; Lal, K; Sinden, RE; Brunk, BP; Roos, DS; Wastling, JM (2008)
Publisher: BioMed Central
Journal: Genome Biology
Languages: English
Types: Article
Subjects: QR, Research
BACKGROUND: Although the genomes of many of the most important human and animal pathogens have now been sequenced, our understanding of the actual proteins expressed by these genomes and how well they predict protein sequence and expression is still deficient. We have used three complementary approaches (two-dimensional electrophoresis, gel-liquid chromatography linked tandem mass spectrometry and MudPIT) to analyze the proteome of Toxoplasma gondii, a parasite of medical and veterinary significance, and have developed a public repository for these data within ToxoDB, making for the first time proteomics data an integral part of this key genome resource. RESULTS: The draft genome for Toxoplasma predicts around 8,000 genes with varying degrees of confidence. Our data demonstrate how proteomics can inform these predictions and help discover new genes. We have identified nearly one-third (2,252) of all the predicted proteins, with 2,477 intron-spanning peptides providing supporting evidence for correct splice site annotation. Functional predictions for each protein and key pathways were determined from the proteome. Importantly, we show evidence for many proteins that match alternative gene models, or previously unpredicted genes. For example, approximately 15% of peptides matched more convincingly to alternative gene models. We also compared our data with existing transcriptional data in which we highlight apparent discrepancies between gene transcription and protein expression. CONCLUSION: Our data demonstrate the importance of protein data in expression profiling experiments and highlight the necessity of integrating proteomic with genomic data so that iterative refinements of both annotation and expression models are possible.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • application to complete genomes. J Mol Biol 2001, 305:567-580. 24. Zuegge J, Ralph S, Schmuker M, McFadden GI, Schneider G: Deci-
    • apicoplast proteins. Gene 2001, 280:19-26. 25. Bender A, van Dooren GG, Ralph SA, McFadden GI, Schneider G:
    • from Plasmodium falciparum. Mol Biochem Parasitol 2003,
    • 132:59-66. 26. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, ms-Collier CJ,
    • Acids Res 2007, 35:W585-W587. 27. Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko
    • Res 2004, 32:5539-5545. 28. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V,
    • Nucleic Acids Res 2006, 34:D247-D251. 29. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D,
    • Res 2007, 35:D224-D228. 30. Dzierszinski F, Popescu O, Toursel C, Slomianny C, Yahiaoui B,
    • Chem 1999, 274:24888-24895. 31. Templeton TJ, Iyer LM, Anantharaman V, Enomoto S, Abrahante JE,
    • eukaryotes. Genome Res 2004, 14:1686-1695. 32. Coppens I, Dunn JD, Romano JD, Pypaert M, Zhang H, Boothroyd JC,
    • mammalian hosts in the vacuolar space. Cell 2006,
    • 125:261-274. 33. Sinai AP, Webster P, Joiner KA: Association of host cell endo-
    • interaction. J Cell Sci 1997, 110:2117-2128. 34. Sinai AP, Joiner KA: The Toxoplasma gondii protein ROP2 medi-
    • vacuole membrane. J Cell Biol 2001, 154:95-108. 35. Crawford MJ, Thomsen-Zieger N, Ray M, Schachtner J, Roos DS, See-
    • despite its de novo synthesis in the apicoplast. EMBO J 2006,
    • 25:3214-3222. 36. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, de l
    • life cycle. Science 2003, 301:1503-1508. 37. Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Flo-
    • Science 2005, 307:82-86. 38. Gupta N, Tanner S, Jaitly N, Adkins JN, Lipton M, Edwards R, Romine
    • Res 2007, 17:1362-1377. 39. Kalume DE, Peri S, Reddy R, Zhong J, Okulate M, Kumar N, Pandey
    • spectrometry-derived data. BMC Genomics 2005, 6:128. 40. Wang R, Prince JT, Marcotte EM: Mass spectrometry of the M.
    • with function, operons, and codon bias. Genome Res 2005,
    • 15:1118-1126. 41. Fermin D, Allen BB, Blackwell TW, Menon R, Adamski M, Xu Y, Ulintz
    • proteomics. Genome Biol 2006, 7:R35. 42. Jaffe JD, Stange-Thomann N, Smith C, DeCaprio D, Fisher S, Butler J,
    • Genome Res 2004, 14:1447-1461. 43. Laemmli UK: Cleavage of structural proteins during the
    • assembly of the head of bacteriophage T4. Nature 1970,
    • 227:680-685. 44. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik
    • mass spectrometry. Nat Biotechnol 1999, 17:676-682. 45. Gatlin CL, Kleemann GR, Hays LG, Link AJ, Yates JR III: Protein
    • spectrometry. Anal Biochem 1998, 263:93-101. 46. Washburn MP, Wolters D, Yates JR III: Large-scale analysis of the
    • technology. Nat Biotechnol 2001, 19:242-247. 47. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP: Evaluation of
    • analysis: the yeast proteome. J Proteome Res 2003, 2:43-50. 48. Bern M, Goldberg D, McDonald WH, Yates JR III: Automatic qual-
    • 2004, 20(Suppl 1):I49-I54. 49. Eng JK, Mccormack AL, Yates JR: An approach to correlate tan-
    • sequences in a protein database. J Am Soc Mass Spectrom 1994,
    • 5:976-989. 50. Sadygov RG, Eng J, Durr E, Saraf A, McDonald H, MacCoss MJ, Yates
    • mated MS/MS spectra interpretation. J Proteome Res 2002,
    • 1:211-215. 51. Tabb DL, McDonald WH, Yates JR III: DTASelect and Contrast:
    • from shotgun proteomics. J Proteome Res 2002, 1:21-26. 52. Tranche Project [http://tranche.proteomecommons.org] 53. KEGG PATHWAY for Toxoplasma gondii [http://roos-
    • compbio2.bio.upenn.edu/approximately fengchen/pathway/] 54. AmiGO! [http://amigo.geneontology.org/cgi-bin/amigo/go.cgi]
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article