Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gilbert, Rebecca Anne; Hitch, Graham James; Hartley, Tom
Languages: English
Types: Article
The capacity of serially-ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel “rehearsal-probe” task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants’ auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aaronson, D. (1968). Temporal Course of Perception in an Immediate Recall Task. Journal of Experimental Psychology, 76(1), 129-140.
    • Anvari, S. H., Trainor, L. J., Woodside, J., & Levy, B. A. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children. Journal of Experimental Child Psychology, 83(2), 111-130.
    • Baddeley, A. D. (1986). Working Memory. Oxford: Oxford University Press.
    • Baddeley, A. D. (2007). Working memory, thought, and action. Oxford Psychology Series (Vol. 45). New York, NY: Oxford University Press.
    • Baddeley, A. D., Gathercole, S. E., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105(1), 158-73.
    • Baddeley, A. D., & Hitch, G. J. (1974). Working Memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (pp. 47-89). New York, NY: Academic Press.
    • Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14(6), 575-589. 10.1016/S0022-5371(75)80045-4
    • Benasich, A. A., & Tallal, P. (2002). Infant discrimination of rapid auditory cues predicts later language impairment. Behavioural Brain Research, 136(1), 31-49.
    • Berens, P. (2009). CircStat: A MATLAB Toolbox for Circular Statistics. Journal of Statistical Software, 31(10), 1-21.
    • Bjork, E. L., & Healy, A. F. (1974). Short-term order and item retention. Journal of Verbal Learning and Verbal Behavior, 13(1), 80-97.
    • Boersma, P., & Weenink, D. (1992). Praat: Doing Phonetics By Computer.
    • Brady, S., Shankweiler, D., & Mann, V. (1983). Speech perception and memory coding in relation to reading ability. Journal of Experimental Child Psychology, 35(2), 345-367.
    • Brown, G. D. A., Preece, T., & Hulme, C. (2000). Oscillator-Based Memory for Serial Order. Psychological Review, 107(1), 127-181.
    • Burgess, N., & Hitch, G. J. (1999). Memory for serial order: A network model of the phonological loop and its timing. Psychological Review, 106(3), 551-581. 10.1037//0033-295X.106.3.551
    • Cantor, J., Engle, R. W., & Hamilton, G. (1991). Short-term memory, working memory, and verbal abilities: How do they relate? Intelligence, 15(2), 229-246.
    • Cocchini, G., Logie, R. H., Della Sala, S., MacPherson, S. E., & Baddeley, A. D. (2002). Concurrent performance of two memory tasks: Evidence for domain-specific working memory systems. Memory & Cognition, 30(7), 1086-1095. 10.3758/BF03194326
    • Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547-552. 10.1016/j.tics.2003.10.005
    • Corkin, S. (1974). Serial-Ordering Deficits in Inferior Readers. Neuropsychologia, 12(3), 347-354. 10.1016/0028-3932(74)90050-5
    • Corsi, P. M. (1972). Human memory and the medial temoral region of the brain. Dissertation Abstracts International, 34(819B).
    • Cowan, N., Li, D., Moffitt, A., Becker, T. M., Martin, E. A., Saults, J. S., & Christ, S. E. (2011). A neural region of abstract working memory. Journal of Cognitive Neuroscience, 23(10), 2852-63. 10.1162/jocn.2011.21625
    • Della Sala, S., Gray, C., Baddeley, A. D., Allamano, N., & Wilson, L. (1999). Pattern span: a tool for unwelding visuo-spatial memory. Neuropsychologia, 37(10), 1189-1199.
    • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309-331.
    • Farrell, S. (2008). Multiple roles for time in short-term memory: Evidence from serial recall of order and timing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(1), 128-145. 10.1037/0278-7393.34.1.128
    • Farrell, S., & McLaughlin, K. (2007). Short-term recognition memory for serial order and timing. Memory & Cognition, 35(7), 1724-1734. 10.3758/BF03193505
    • FitzGerald, P., & Broadbent, D. E. (1985). Order of report and the structure of temporary memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(2), 217-228.
    • Flaugnacco, E., Lopez, L., Terribili, C., Zoia, S., Buda, S., Tilli, S., … Schön, D. (2014). Rhythm perception and production predict reading abilities in developmental dyslexia. Frontiers in Human Neuroscience, 8. 10.3389/fnhum.2014.00392
    • Frankish, C. R. (1985). Modality-specific grouping effects in short-term memory. Journal of Memory and Language, 24(2), 200-209. 10.1016/0749-596X(85)90024-5
    • Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15(1), 3-10. 10.1016/j.tics.2010.10.001
    • Grube, M., Cooper, F. E., & Griffiths, T. D. (2013). Auditory temporal-regularity processing correlates with language and literacy skill in early adulthood. Cognitive Neuroscience, 4(3-4), 225-230. 10.1080/17588928.2013.825236
    • Halford, G. S., Maybery, M. T., O'Hare, A. W., & Grant, P. (1994). The Development of Memory and Processing Capacity. Child Development, 65(5), 1338-1356. 10.1111/j.1467-8624.1994.tb00820.x
    • Hartley, T., & Houghton, G. (1996). A Linguistically Constrained Model of Short-Term Memory for Nonwords. Journal of Memory and Language, 31(35), 1-31.
    • Hartley, T., Hurlstone, M. J., & Hitch, G. J. (2016). Effects of rhythm on memory for spoken sequences: A model and tests of its stimulus-driven mechanism. Cognitive Psychology, 87, 135-178. 10.1016/j.cogpsych.2016.05.001
    • Henson, R. N. (1998). Short-term memory for serial order: the Start-End Model. Cognitive Psychology, 36(2), 73-137. 10.1006/cogp.1998.0685
    • Hitch, G. J., Burgess, N., Towse, J. N., & Culpin, V. (1996). Temporal Grouping Effects in Immediate Recall: A Working Memory Analysis. The Quarterly Journal of
    • Hughes, R. W., Chamberland, C., Tremblay, S., & Jones, D. M. (2016). Perceptual-motor determinants of auditory-verbal serial short-term memory. Journal of Memory and Language, 90, 126-146. 10.1016/j.jml.2016.04.006
    • Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across domains: An overview of the literature and directions for future research. Psychological Bulletin, 140(2), 339-73. 10.1037/a0034221
    • Joseph, S., Teki, S., Kumar, S., Husain, M., & Griffiths, T. D. (2016). Resource allocation models of auditory working memory. Brain Research, 1640, 183-192. 10.1016/j.brainres.2016.01.044
    • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The Generality of Working Memory Capacity: A Latent-Variable Approach to Verbal and Visuospatial Memory Span and Reasoning. Journal of Experimental Psychology: General, 133(2), 189-217. 10.1037/0096-3445.133.2.189
    • Kumar, S., Joseph, S., Pearson, B., Teki, S., Fox, Z. V., Griffiths, T. D., & Husain, M. (2013). Resource allocation and prioritization in auditory working memory. Cognitive Neuroscience, 4(1), 12-20. 10.1080/17588928.2012.716416
    • Leclercq, A.-L., & Majerus, S. (2010). Serial-order short-term memory predicts vocabulary development: Evidence from a longitudinal study. Developmental Psychology, 46(2), 417-427.
    • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-81. 10.1038/36846
    • Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347-356. 10.1038/nn.3655
    • Macken, B., Taylor, J., & Jones, D. M. (2015). Limitless capacity: a dynamic object-oriented approach to short-term memory. Frontiers in Psychology, 6, 293. 10.3389/fpsyg.2015.00293
    • Madison, G. S., Forsman, L., Blom, Ö., Karabanov, A., & Ullén, F. (2009). Correlations between intelligence and components of serial timing variability. Intelligence, 37(1), 68-75. 10.1016/j.intell.2008.07.006
    • Majerus, S., Cowan, N., Péters, F., Van Calster, L., Phillips, C., & Schrouff, J. (2016). CrossModal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory. Cerebral Cortex, 26(1), 166-179. 10.1093/cercor/bhu189
    • Majerus, S., D'Argembeau, A., Martinez Perez, T., Belayachi, S., Van der Linden, M., Collette, F., … Maquet, P. (2010). The commonality of neural networks for verbal and visual short-term memory. Journal of Cognitive Neuroscience, 22(11), 2570-93. 10.1162/jocn.2009.21378
    • Majerus, S., Poncelet, M., Elsen, B., & van der Linden, M. (2006). Exploring the relationship between new word learning and short-term memory for serial order recall, item recall, and item recognition. European Journal of Cognitive Psychology, 18(6), 848-873. 10.1080/09541440500446476
    • Marshall, C. M., Snowling, M. J., & Bailey, P. J. (2001). Rapid Auditory Processing and
    • Martinez Perez, T., Majerus, S., & Poncelet, M. (2012). The contribution of short-term memory for serial order to early reading acquisition: evidence from a longitudinal study. Journal of Experimental Child Psychology, 111(4), 708-23. 10.1016/j.jecp.2011.11.007
    • Martinez Perez, T., Majerus, S., & Poncelet, M. (2013). Impaired short-term memory for order in adults with dyslexia. Research in Developmental Disabilities, 34(7), 2211- 2223. 10.1016/j.ridd.2013.04.005
    • Mazzoni, D., & Dannenburg, R. (2000). Audacity.
    • Morris, R. G., Gick, M. L., & Craik, F. I. M. (1988). Processing resources and age differences in working memory. Memory & Cognition, 16(4), 362-366. 10.3758/BF03197047
    • Oppenheim, G. M., & Dell, G. S. (2010). Motor movement matters: the flexible abstractness of inner speech. Memory & Cognition, 38(8), 1147-60. 10.3758/MC.38.8.1147
    • Page, M. P. A., & Norris, D. (1998). The primacy model: A new model of immediate serial recall. Psychological Review, 105(4), 761-781.
    • Papadopoulos, T. C., Georgiou, G. K., & Parrila, R. K. (2012). Low-level deficits in beat perception: neither necessary nor sufficient for explaining developmental dyslexia in a consistent orthography. Research in Developmental Disabilities, 33(6), 1841-56. 10.1016/j.ridd.2012.04.009
    • Protopapas, A. (2014). From temporal processing to developmental language disorders: mind the gap. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1634), 20130090. 10.1098/rstb.2013.0090
    • Ramus, F., & Szenkovits, G. (2008). What phonological deficit? Quarterly Journal of Experimental Psychology, 61(1), 129-41. 10.1080/17470210701508822
    • Rapala, M. M., & Brady, S. (1990). Reading ability and short-term memory: The role of phonological processing. Reading and Writing, 2(1), 1-25. 10.1007/BF00383371
    • Ryan, J. (1969a). Grouping and short-term memory: Different means and patterns of grouping. The Quarterly Journal of Experimental Psychology, 21(2), 137-147. 10.1080/14640746908400206
    • Ryan, J. (1969b). Temporal Grouping, Rehearsal and Short-Term Memory. The Quarterly Journal of Experimental Psychology, 21(2), 148-155. 10.1080/14640746908400207
    • Saito, S. (2001). The phonological loop and memory for rhythms: An individual differences approach. Memory, 9(4), 313-322. 10.1080/09658210143000164
    • Service, E., Maury, S., & Luotoniemi, E. (2007). Individual differences in phonological learning and verbal STM span. Memory & Cognition, 35(5), 1122-1135.
    • Smith, E. E., & Jonides, J. (1997). Working memory: a view from neuroimaging. Cognitive Psychology, 33(1), 5-42. 10.1006/cogp.1997.0658
    • Teki, S., & Griffiths, T. D. (2014). Working memory for time intervals in auditory rhythmic sequences. Frontiers in Psychology, 5, 1329. 10.3389/fpsyg.2014.01329
    • The MathWorks Inc. (2010). MATLAB - The Language of Technical Computing. Natick, Massachusetts: The MathWorks, Inc.
    • Thomson, J. M., & Goswami, U. (2008). Rhythmic processing in children with developmental dyslexia: auditory and motor rhythms link to reading and spelling. Journal of Physiology - Paris, 102(1), 120-129. 10.1016/j.jphysparis.2008.03.007
    • Tierney, A. T., & Kraus, N. (2014). Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH). Frontiers in Human Neuroscience, 8, 949. 10.3389/fnhum.2014.00949
    • Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 1120-35. 10:1167/4.12.11
    • Wilson, J. T. L., Scott, J. H., & Power, K. G. (1987). Developmental differences in the span of visual memory for pattern. British Journal of Developmental Psychology, 5(3), 249- 255. 10.1111/j.2044-835X.1987.tb01060.x
    • Wolff, P. H. (2002). Timing precision and rhythm in developmental dyslexia. Reading and Writing, 15(1-2), 179-206. 10.1023/A:1013880723925
    • Wolff, P. H., Michel, G. F., & Ovrut, M. (1990). The Timing of Syllable Repetitions in Developmental Dyslexia. Journal of Speech, Language, and Hearing Research, 33(2), 281-289. 10.1044/jshr.3302.281
    • Woodruff Carr, K., White-Schwoch, T., Tierney, A. T., Strait, D. L., & Kraus, N. (2014). Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. Proceedings of the National Academy of Sciences, 1406219111-. 10.1073/pnas.1406219111
    • Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-5. 10.1038/nature06860
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    Permissiveness in Transactional Memories


Share - Bookmark

Cite this article