Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Brownjohn, J.M.W.; Middleton, C.T. (2008)
Publisher: Elsevier Ltd
Languages: English
Types: Article
Manufacturing plants that produce micro-electronic components, and facilities for extremeprecision\ud experimental measurements have strict vertical vibration serviceability requirements due to sub-micron feature size or optical/target dimensions. Failure to meet these criteria may result in extremely costly loss of production or failure of experiments. For such facilities floors are massive but stiff, generally have first mode natural frequencies above 10Hz and are typically classed as\ud ‘high frequency floors’. The process of design to limit in-service vibrations to within specific or generic vibration criteria is termed ‘vibration control’.\ud \ud Several guidance documents for vibration control of high frequency floors have been published, for different applications. These design guides typically propose simplifications of complex floor systems and use of empirical predictive design formulae. A recently published guide uses a more rigorous approach based on first-principle modal analysis and modeling footfalls as effective\ud impulses, but there remain unresolved issues about its application, and this paper addresses these in order to develop an improved methodology.\ud \ud First, the significant but conventionally discounted contribution of resonance well above the conventionally accepted boundary between low and high frequency floors is examined. The level of necessary modeling detail is then considered along with the effect of accounting for adjacent bays in simulation of a regular multi-bay floors. Finally, while it is assumed that contributions of higher modes to impulsive response decrease so that a cut-off frequency can be prescribed, simulations demonstrate that with both effective impulse and real footfall forces, there is not necessarily asymptotic response with rising floor mode frequency.\ud \ud The conclusion is that there are no shortcuts to predicting response of high frequency floors to footfall excitation. Simulations must consider resonant response due to high order harmonics, provide adequate detail in finite element models and adopt a cutoff frequency that depends more on\ud usage than on features of the floor or of the walking.

Share - Bookmark

Cite this article