LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Phang, Sendy; Vukovic, Ana; Susanto, Hadi; Benson, Trevor M.; Sewell, Phillip (2014)
Publisher: Optical Society of America
Languages: English
Types: Article
Subjects: Physics - Optics

Classified by OpenAIRE into

arxiv: Physics::Optics
We report on the impact of realistic gain and loss models on the bistable operation of nonlinear parity–time (PT) Bragg gratings. In our model we include both dispersive and saturable gain and show that levels of gain/loss saturation can have a significant impact on the bistable operation of a nonlinear PT Bragg grating based on GaAs material. The hysteresis of the nonlinear PT Bragg grating is analyzed for different levels of gain and loss and different saturation levels. We show that high saturation levels can improve the nonlinear operation by reducing the intensity at which the bistability occurs. However, when the saturation intensity is low, saturation inhibits the PT characteristics of the grating.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • C. M. Bender, S. Boettcher, and P. N. Meisinger, Journal of Mathematical Physics 40, 2201 (1999).
    • 2. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Physical Review Letters 106, 213901 (2011).
    • 3. M. Kulishov, J. M. Laniel, N. Bélanger, J. Azaña, and D. V Plant, Optics Express 13, 3068-78 (2005).
    • 4. S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, Journal of the Optical Society of America B 30, 2984 (2013).
    • 5. M. Greenberg and M. Orenstein, Optics Express 12, 4013-8 (2004).
    • 6. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, Optics Letters 32, 2632 (2007).
    • 7. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Nature 488, 167-71 (2012).
    • 8. K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, Physical Review Letters 100, 103904 (2008).
    • 9. S. Nixon, L. Ge, and J. Yang, Physical Review A 85, 023822 (2012).
    • 10. H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, Physical Review A 82, 043803 (2010).
    • 11. A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, Physical Review A 82, (2010).
    • 12. F. Nazari, M. Nazari, and M. K. Moravvej-Farshi, Optics Letters 36, 4368-70 (2011).
    • 13. L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, Nature Materials 12, 108-13 (2013).
    • 14. M. Kulishov, B. Kress, and R. Slavík, Optics Express 21, 68-70 (2013).
    • 15. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nature Physics 6, 192-195 (2010).
    • 16. J. Čtyroký, V. Kuzmiak, and S. Eyderman, Optics Express 18, 21585-21593 (2010).
    • 17. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, Nature Photonics 7, 579-582 (2013).
    • 18. Z. Musslimani, K. Makris, R. El-Ganainy, and D. N. Christodoulides, Physical Review Letters 100, 030402 (2008).
    • 19. C. Christopoulos, The Transmission-Line Modeling Method TLM (IEEE Press, 1995).
    • 20. M. Krumpholz, C. Huber, and P. Russer, IEEE Transactions on Microwave Theory and Techniques 43, 1935-1950 (1995).
    • 21. V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, and T. M. Benson, Optical and Quantum Electronics 37, 3- 24 (2005).
    • 22. S. C. Hagness, R. M. Joseph, and A. Taflove, Radio Science 31, 931-941 (1996).
    • 23. M. Bass, G. Li, and E. van Stryland, Handbook of Optics Vol. 4, 3rd ed. (McGraw Hill, 2010).
    • 24. S. Lan, A. V. Gopal, K. Kanamoto, and H. Ishikawa, Applied Physics Letters 84, 5124 (2004).
    • 25. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE Press, 1991).
    • 26. A. Suryanto, E. van Groesen, M. Hammer, and H. J. W. M. Hoekstra, Optical and Quantum Electronics 35, 313-332 (2003).
    • 1. C. M. Bender, S. Boettcher, and P. N. Meisinger, "PTsymmetric quantum mechanics," Journal of Mathematical Physics 40, 2201 (1999).
    • 2. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, "Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures," Physical Review Letters 106, 213901 (2011).
    • 3. M. Kulishov, J. M. Laniel, N. Bélanger, J. Azaña, and D. V Plant, "Nonreciprocal waveguide Bragg gratings," Optics Express 13, 3068-78 (2005).
    • 4. S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, "Ultrafast optical switching using paritytime symmetric Bragg gratings," Journal of the Optical Society of America B 30, 2984 (2013).
    • 5. M. Greenberg and M. Orenstein, "Unidirectional complex grating assisted couplers.," Optics Express 12, 4013-8 (2004).
    • 6. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, "Theory of coupled optical PTsymmetric structures," Optics Letters 32, 2632 (2007).
    • 7. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices.," Nature 488, 167-71 (2012).
    • 8. K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, "Beam Dynamics in PT Symmetric Optical Lattices," Physical Review Letters 100, 103904 (2008).
    • 9. S. Nixon, L. Ge, and J. Yang, "Stability analysis for solitons in PT-symmetric optical lattices," Physical Review A 85, 023822 (2012).
    • 10. H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, "Unidirectional nonlinear PTsymmetric optical structures," Physical Review A 82, 043803 (2010).
    • 11. A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, "Nonlinear suppression of time reversals in PTsymmetric optical couplers," Physical Review A 82, (2010).
    • 12. F. Nazari, M. Nazari, and M. K. Moravvej-Farshi, "A 2×2 spatial optical switch based on PT-symmetry.," Optics Letters 36, 4368-70 (2011).
    • 13. L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, "Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies.," Nature Materials 12, 108-13 (2013).
    • 14. M. Kulishov, B. Kress, and R. Slavík, "Resonant cavities based on Parity-Time-symmetric diffractive gratings," Optics Express 21, 68-70 (2013).
    • 15. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, "Observation of parity-time symmetry in optics," Nature Physics 6, 192-195 (2010).
    • 16. J. Čtyroký, V. Kuzmiak, and S. Eyderman, "Waveguide structures with antisymmetric gain/loss profile," Optics Express 18, 21585-21593 (2010).
    • 17. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, "What is - and what is not - an optical isolator," Nature Photonics 7, 579-582 (2013).
    • 18. Z. Musslimani, K. Makris, R. El-Ganainy, and D. N. Christodoulides, "Optical solitons in PT periodic potentials," Physical Review Letters 100, 030402 (2008).
    • 19. C. Christopoulos, The Transmission-Line Modeling Method TLM (IEEE Press, 1995).
    • 20. M. Krumpholz, C. Huber, and P. Russer, "A field theoretical comparison of FDTD and TLM," IEEE Transactions on Microwave Theory and Techniques 43, 1935-1950 (1995).
    • 21. V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, and T. M. Benson, "Time domain simulation in photonics: A comparison of nonlinear dispersive polarisation models," Optical and Quantum Electronics 37, 3-24 (2005).
    • 22. S. C. Hagness, R. M. Joseph, and A. Taflove, "Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations," Radio Science 31, 931-941 (1996).
    • 23. M. Bass, G. Li, and E. van Stryland, Handbook of Optics Vol. 4, 3rd ed. (McGraw Hill, 2010).
    • 24. S. Lan, A. V. Gopal, K. Kanamoto, and H. Ishikawa, "Ultrafast response of photonic crystal atoms with Kerr nonlinearity to ultrashort optical pulses," Applied Physics Letters 84, 5124 (2004).
    • 25. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE Press, 1991).
    • 26. A. Suryanto, E. van Groesen, M. Hammer, and H. J. W. M. Hoekstra, "A finite element scheme to study the nonlinear optical response of a finite grating without and with defect," Optical and Quantum Electronics 35, 313-332 (2003).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article