Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
ATLAS Collaboration (2016)
Publisher: Springer
Types: Unknown,Article
Subjects: Particle Physics - Experiment, Hadron-Hadron Scattering, QC, 530, :Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP], Science & Technology, Física, :Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP], High Energy Physics - Experiment, 530 Physics
ddc: ddc:530

Classified by OpenAIRE into

arxiv: High Energy Physics::Experiment, High Energy Physics::Phenomenology
A search for direct chargino production in anomaly-mediated supersymmetry breaking scenarios is performed in pp collisions at √ s = 7 TeV using 4.7 fb−1 of data collected with the ATLAS experiment at the LHC. In these models, the lightest chargino is predicted to have a lifetime long enough to be detected in the tracking detectors of collider experiments. This analysis explores such models by searching for chargino decays that result in tracks with few associated hits in the outer region of the tracking system. The transverse-momentum spectrum of candidate tracks is found to be consistent with the expectation from the Standard Model background processes and constraints on chargino properties are obtained. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].
    • [2] L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].
    • [3] ATLAS collaboration, Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at √s = 7 TeV, Eur. Phys. J. C 72 (2012) 1993 [arXiv:1202.4847] [INSPIRE].
    • [8] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
    • [9] ATLAS collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823 [arXiv:1005.4568] [INSPIRE].
    • [10] W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].
    • [11] M. Kr¨amer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi, et al., Supersymmetry production cross sections in pp collisions at √s = 7 TeV, arXiv:1206.2892 [INSPIRE].
    • [12] ATLAS collaboration, Performance of primary vertex reconstruction in proton-proton collisions at √s = 7 TeV in the ATLAS experiment, ATLAS-CONF-2010-06 (2010).
    • [13] M. Cacciari, G.P. Salam and G. Soyez, The k¯t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
    • [26] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [arXiv:1007.1727] [INSPIRE].
    • [27] A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].
    • [28] C. Chen, M. Drees and J. Gunion, Searching for invisible and almost invisible particles at + − colliders, Phys. Rev. Lett. 76 (1996) 2002 [hep-ph/9512230] [INSPIRE]. e e
    • [29] ALEPH collaboration, A. Heister et al., Search for charginos nearly mass degenerate with + − collisions at center-of-mass energies up to 209 GeV, the lightest neutralino in e e Phys. Lett. B 533 (2002) 223 [hep-ex/0203020] [INSPIRE].
    • [30] OPAL collaboration, G. Abbiendi et al., Search for nearly mass degenerate charginos and neutralinos at LEP, Eur. Phys. J. C 29 (2003) 479 [hep-ex/0210043] [INSPIRE].
    • [31] DELPHI collaboration, J. Abdallah et al., Search for SUSY in the AMSB scenario with the DELPHI detector, Eur. Phys. J. C 34 (2004) 145 [hep-ex/0403047] [INSPIRE].
    • [32] LEP2 SUSY Working Group, Combined LEP chargino results, up to 208 GeV for low DM, http://lepsusy.web.cern.ch/lepsusy/www/inoslowdmsummer02/charginolowdm_pub.html.
    • [33] PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].
    • [34] Fermi LAT collaboration, M. Ackermann et al., Measurement of separate cosmic-ray electron and positron spectra with the Fermi large area telescope, Phys. Rev. Lett. 108 (2012) 011103 [arXiv:1109.0521] [INSPIRE].
    • [35] N. Jarosik, C. Bennett, J. Dunkley, B. Gold, M. Greason, et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors and basic results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [INSPIRE].
    • 1 School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
    • 2 Physics Department, SUNY Albany, Albany NY, United States of America
    • 3 Department of Physics, University of Alberta, Edmonton AB, Canada
    • 4 (a)Department of Physics, Ankara University, Ankara; (b)Department of Physics, Dumlupinar University, Kutahya; (c)Department of Physics, Gazi University, Ankara; (d)Division of Physics, TOBB University of Economics and Technology, Ankara; (e)Turkish Atomic Energy Authority, Ankara, Turkey
    • 5 LAPP, CNRS/IN2P3 and Universit´e de Savoie, Annecy-le-Vieux, France
    • 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
    • 7 Department of Physics, University of Arizona, Tucson AZ, United States of America
    • 8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
    • 9 Physics Department, University of Athens, Athens, Greece
    • 10 Physics Department, National Technical University of Athens, Zografou, Greece
    • 11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
    • 12 Institut de F´ısica d'Altes Energies and Departament de F´ısica de la Universitat Aut`onoma de Barcelona and ICREA, Barcelona, Spain
    • 13 (a)Institute of Physics, University of Belgrade, Belgrade; (b)Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
    • 14 Department for Physics and Technology, University of Bergen, Bergen, Norway
    • 15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
    • 16 Department of Physics, Humboldt University, Berlin, Germany
    • 17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
    • 18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
    • 19 (a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics, Dogus University, Istanbul; (c)Department of Physics Engineering, Gaziantep University, Gaziantep; (d)Department of Physics, Istanbul Technical University, Istanbul, Turkey
    • 20 (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Universit`a di Bologna, Bologna, Italy
    • 21 Physikalisches Institut, University of Bonn, Bonn, Germany
    • 22 Department of Physics, Boston University, Boston MA, United States of America
    • 23 Department of Physics, Brandeis University, Waltham MA, United States of America
    • 24 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
    • 25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
    • 26 (a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest; (c)West University in Timisoara, Timisoara, Romania
    • 27 Departamento de F´ısica, Universidad de Buenos Aires, Buenos Aires, Argentina
    • 28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
    • 29 Department of Physics, Carleton University, Ottawa ON, Canada
    • 30 CERN, Geneva, Switzerland
    • 31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
    • 32 (a)Departamento de F´ısica, Pontificia Universidad Cat´olica de Chile, Santiago; (b)Departamento de F´ısica, Universidad T´ecnica Federico Santa Mar´ıa, Valpara´ıso, Chile
    • 33 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department of Modern Physics, University of Science and Technology of China, Anhui; (c)Department of Physics, Nanjing University, Jiangsu; (d)School of Physics, Shandong University, Shandong, China
    • 34 Laboratoire de Physique Corpusculaire, Clermont Universit´e and Universit´e Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
    • 35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
    • 36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
    • 37 (a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Universit`a della Calabria, Arcavata di Rende, Italy
    • 38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
    • 39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
    • 40 Physics Department, Southern Methodist University, Dallas TX, United States of America
    • 41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
    • 42 DESY, Hamburg and Zeuthen, Germany
    • 43 Institut fu¨r Experimentelle Physik IV, Technische Universit¨at Dortmund, Dortmund, Germany
    • 44 Institut fu¨r Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
    • 45 Department of Physics, Duke University, Durham NC, United States of America
    • 46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
    • 47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
    • 48 Fakult¨at fu¨r Mathematik und Physik, Albert-Ludwigs-Universita¨t, Freiburg, Germany
    • 49 Section de Physique, Universit´e de Gen`eve, Geneva, Switzerland
    • 50 (a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Universit`a di Genova, Genova, Italy
    • 51 (a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
    • 52 II Physikalisches Institut, Justus-Liebig-Universit¨at Giessen, Giessen, Germany
    • 53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
    • 54 II Physikalisches Institut, Georg-August-Universita¨t, G¨ottingen, Germany
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • SNSF | High-Energy Hadron Interac...

Related to

  • egiEGI virtual organizations: atlas
  • egiEGI Projects: EGI-InSPIRE

Cite this article