LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nadappuram, Binoy Paulose; McKelvey, Kim M. (Kim Martin); Byers, Joshua C.; Güell, Aleix G.; Colburn, Alex W.; Lazenby, Robert A.; Unwin, Patrick R. (2015)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QD
The fabrication and use of a multifunctional electrochemical probe incorporating two independent carbon working electrodes and two electrolyte-filled barrels, equipped with quasi-reference counter electrodes (QRCEs), in the end of a tapered micrometer-scale pipet is described. This “quad-probe” (4-channel probe) was fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barrelled pipet. After filling the open channels with electrolyte solution, a meniscus forms at the end of the probe and covers the two working electrodes. The two carbon electrodes can be used to drive local electrochemical reactions within the meniscus while a bias between the QRCEs in the electrolyte channels provides an ion conductance signal that is used to control and position the meniscus on a surface of interest. When brought into contact with a surface, localized high resolution amperometric imaging can be achieved with the two carbon working electrodes with a spatial resolution defined by the meniscus contact area. The substrate can be an insulating material or (semi)conductor, but herein, we focus mainly on conducting substrates that can be connected as a third working electrode. Studies using both aqueous and ionic liquid electrolytes in the probe, together with gold and individual single walled carbon nanotube samples, demonstrate the utility of the technique. Substrate generation-dual tip collection measurements are shown to be characterized by high collection efficiencies (approaching 100%). This hybrid configuration of scanning electrochemical microscopy (SECM) and scanning electrochemical cell microscopy (SECCM) should be powerful for future applications in electrode mapping, as well as in studies of insulating materials as demonstrated by transient spot redox-titration measurements at an electrostatically charged Teflon surface and at a pristine calcite surface, where a functionalized probe is used to follow the immediate pH change due to dissolution.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Kosmulski, M. Chemical properties of material surfaces; Marcel Dekker: NY, 2001.
    • (2) Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41,797-828.
    • (3) Mauzeroll, J.; Bard, A. J. Proc. Natl Acad. Sci. USA 2004, 101, 7862-7867.
    • (4) Amemiya, S.; Bard, A. J. Anal. Chem. 2000, 72, 4940-4948.
    • (5) Aaronson, B. D. B.; Lai, S. C. S.; Unwin, P. R. Langmuir 2014, 30, 1915-1919.
    • (6) Bard, A. J.; Mirkin, M. V. (eds.) Scanning electrochemical microscopy; 2nd ed.; CRC Press: Boca Raton, FL., 2012.
    • (7) Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O. A. Anal. Chem. 1989, 61,132-138.
    • (8) Bard, A. J.; Denuault, G.; Lee, C.; Mandler, D.; Wipf, D. O. Acc. Chem. Res. 1990, 23, 357-363.
    • (9) Lohrengel, M. M.; Moehring, A.; Pilaski, M. Fresen. J. Anal. Chem. 2000, 367, 334-339.
    • (10) Gasiorowski, J.; Kollender, J. P.; Hingerl, K.; Sariciftci, N. S.; Mardare, A. I.; Hassel, A. W. Phys. Chem. Chem. Phys. 2014, 16, 3739-3748.
    • (11) Clausmeyer, J.; Henig, J.; Schuhmann, W.; Plumere, N. Chemphyschem 2014, 15, 151- 156.
    • (12) Amemiya, S.; Bard, A. J.; Fan, F.-R. F.; Mirkin, M. V.; Unwin, P. R. Annu. Rev. Anal. Chem. 2008, 1, 95-131.
    • (13) Zhou, J.; Zu, Y.; Bard, A. J. J. Electroanal. Chem. 2000, 491, 22- 29.
    • (22) Rodolfa, K. T.; Bruckbauer, A.; Zhou, D. J.; Schevchuk, A. I.; Korchev, Y. E.; Klenerman, D. Nano Letters 2006, 6, 252-257.
    • (23) O'Connell, M. A.; Snowden, M. E.; McKelvey, K.; Gayet, F.; Shirley, I.; Haddleton, D. M.; Unwin, P. R. Langmuir 2014, 30, 10011-10018.
    • (24) Güell, A. G.; Ebejer, N.; Snowden, M. E.; Macpherson, J. V.; Unwin, P. R. J. Am. Chem. Soc. 2012, 134, 7258-7261.
    • (25) Güell, A. G.; Meadows, K. E.; Dudin, P. V.; Ebejer, N.; Macpherson, J. V.; Unwin, P. R. Nano Letters 2014, 14, 220-224.
    • (26) Cortes-Salazar, F.; Lesch, A.; Momotenko, D.; Busnel, J.-M.; Wittstock, G.; Girault, H. H. Anal. Methods 2010, 2, 817-823.
    • (27) Momotenko, D.; Cortes-Salazar, F.; Lesch, A.; Wittstock, G.; Girault, H. H. Anal. Chem. 2011, 83, 5275-5282.
    • (28) Momotenko, D.; Qiao, L.; Cortes-Salazar, F.; Lesch, A.; Wittstock, G.; Girault, H. H. Anal. Chem. 2012, 84, 6630-6637.
    • (29) Takahashi, Y.; Shevchuk, A. I.; Novak, P.; Zhang, Y.; Ebejer, N.; Macpherson, J. V.; Unwin, P. R.; Pollard, A. J.; Roy, D.; Clifford, C. A.; Shiku, H.; Matsue, T.; Klenerman, D.; Korchev, Y. E. Angew. Chem. Int. Ed. 2011, 50, 9638-9642.
    • (30) McKelvey, K.; Nadappuram, B. P.; Actis, P.; Takahashi, Y.; Korchev, Y. E.; Matsue, T.; Robinson, C.; Unwin, P. R. Anal. Chem. 2013, 85, 7519-7526.
    • (31) Nadappuram, B. P.; McKelvey, K.; Al Botros, R.; Colburn, A. W.; Unwin, P. R. Anal. Chem. 2013, 85, 8070-8074..
    • (32) Thakar, R.; Weber, A. E.; Morris, C. A.; Baker, L. A. Analyst 2013, 138, 5973-5982.
    • (33) Macpherson, J. V.; Simjee, N.; Unwin, P. R. Electrochim. Acta 2001, 47, 29-45.
    • (34) Snowden, M. E.; Güell, A. G.; Lai, S. C. S.; McKelvey, K.; Ebejer, N.; O'Connell, M. A.; Colburn, A. W.; Unwin, P. R. Anal. Chem. 2012, 84, 2483-2491.
    • (35) Lazenby, R. A.; McKelvey, K.; Peruffo, M.; Baghdadi, M.; Unwin, P. R. J. Solid State Electr. 2013, 17, 2979-2987.
    • (36) Sun, P.; Laforge, F. O.; Mirkin, M. V. Phys. Chem. Chem. Phys. 2007, 9, 802-823.
    • (37) Liu, C.; Bard, A. J. Nat. Mater. 2008, 7,506-509.
    • (38) Liu, C.; Bard, A. J. J. Am. Chem. Soc. 2009, 131, 6397-6401.
    • (39) Baytekin, B.; Baytekin, T. H.; Grzybowski, B. A. J. Am. Chem. Soc. 2012, 134, 7223- 7226.
    • (40) Lin, Z.; Cheng, G.; Lee, S., Pradel, K. C.; Wang Z. L. Adv. Mater. 2014, 26, 4690-4696.
    • (41) Jones, C. E.; Unwin, P. R.; Macpherson, J. V. ChemPhysChem 2003, 4, 139-146.
    • (42) Kinnear, S. L.; McKelvey, K.; Snowden, M. E.; Peruffo, M.; Unwin, P. R. Langmuir 2013, 29, 15565-15572.
    • (43) Martin, R. D.; Unwin, P. R. J. Electroanal. Chem. 1997, 439, 123-136.
    • (44) Ghilane, J.; Lagrost, C.; Hapiot, P. Anal. Chem. 2007, 79, 7383-7391.
    • (45) Carano, M.; Bond, A. M. Aust. J. Chem. 2007, 60, 29-34.
    • (45) Laforge, F. O.; Velmurugan, J.; Wang, Y.; Mirkin, M. V. Anal. Chem. 2009, 81, 3143- 3150.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    Surface Charge Visualization at Viable Living Cells

    201670
    70%

Share - Bookmark

Funded by projects

  • EC | POLYMAP
  • EC | QUANTIF

Cite this article