LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yeo, Syn Kok
Languages: English
Types: Doctoral thesis
Subjects: Q1, RC0254

Classified by OpenAIRE into

mesheuropmc: parasitic diseases
Apoptosis is an important process in normal mammary gland physiology and has been implicated in mammary gland involution. In breast cancer cells, apoptotic resistance is an acquired feature that can promote tumour growth and progression. In order to assess the importance of apoptosis in these processes, caspases were directly inhibited by conditional expression of baculovirus p35 protein, a pan-caspase inhibitor, in the mammary glands of mice (rtTA/p35 mouse model). Inhibition of caspases during the first phase of involution in rtTA/p35 mice increased the number of sloughed luminal bodies which stained negatively for cleaved caspase-3. However, the total number of sloughed luminal bodies between mice with and without p35 expression was not changed. This suggests that caspase activation is not essential for the sloughing of mammary epithelial cells into lumen of alveoli and the initiation of involution may be a caspase-independent event. The importance of apoptotic resistance in breast cancer progression was also addressed by crossing rtTA/p35 mice with mice over-expressing the ErbB2 oncogene (Neu). Expression of p35 in established Neu mammary tumours did not affect the growth rates of tumours relative to un-induced controls. However, an increased number of mice with lung and liver metastases were observed when p35 was induced. This result substantiates the importance of apoptotic resistance in promoting metastasis and warrants the targeting of apoptosis regulators as an anti-metastatic therapy.\ud The NF-κB signalling pathway regulates a range of anti-apoptotic genes and can also induce the expression of a variety of metastatic promoting genes. Accordingly, the role and potential of the NF-κB p52 subunit as a therapeutic target was investigated. Firstly, this was addressed by silencing the Nfkb2 gene, which encodes p100/p52, in mammary cancer cell lines. Interestingly, assessment of these cells in in vitro assays measuring motility and tumour initiating potential revealed opposing effects in differing cell lines upon Nfkb2 knockdown. In N202.1A cells (ER-ve/ErbB2+ve), therapeutically beneficial effects were seen whereas in the 4T1 cell line (ER+ve/ErbB2-ve), malignancy was exacerbated. One explanation for the differential effects observed is that the negative regulatory subunit p100 and the transcriptional subunit p52 alternately have dominant roles in the respective cell lines. Although these results demonstrate a role for p52 in regulating tumour initiating potential in particular cell lines, the contextual outcomes indicate that targeting p52 at the gene level may be detrimental in cases where the loss of p100 outweighs the loss of p52. This indicates that strategies aimed at disrupting p52 activity should circumvent the loss of p100. Therefore, we addressed the possibility of diminishing p52 transcriptional activity via promotion of repressive transcriptional complexes. As the formation of repressive complexes is favoured by phosphorylation of Ser-222 in p52, we addressed the effects of over-expressing the S222D p52 mutant in 4T1 cells. In in vitro assays assessing proliferation, colony forming potential, tumour initiating potential and motility, we did not observe any differences upon expression of S222D p52. However, over-expression of S222A p52 did increase the motility of 4T1 cells and this demonstrates that the lack of Ser-222 phosphorylation (promoting transcriptionally active complexes) can contribute to the malignancy of breast cancer cells.\ud Due to the context dependent effects of Nfkb2 silencing, it was important to identify the particular subtypes of breast cancer which are dependent on p52 activity. We assessed a cohort of BRCA2-/- p53-/- tumours for nuclear p52 staining along with markers for respective breast cancer subtypes by immuno-histochemistry and found a positive correlation between p52 and p63. This suggests that aberrant p52 activity may be common in basal-like breast cancers which typically express p63 and could benefit most from p52 targeted therapies. In summary, our results indicate that targeting p52 in breast cancer cells can be therapeutically beneficial but only in particular subtypes of breast cancer and by certain therapeutic strategies.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1.3.8 The NFKB2 gene and its relevance to breast cancer .................. 36 1.4 Aims & Objectives................................................................................ 38 CHAPTER 4.......................................................................................................... 99 4 Elucidating the effects of silencing Nfkb2 in mammary cancer cell lines ...............................................................................................................................100
    • 4.1 Introduction ..........................................................................................100
    • 4.2 Effects of silencing Nfkb2 in mammary cancer cell lines ...........101
    • 4.2.1 Silencing of Nfkb2 leads to elevated basal NF-κB activity .............
    • in ErbB2-ve 4T1 and EPH4 cell lines but decreases the basal .......
    • NF- κB activity of ErbB2+ve N202.1a cells ....................................101
    • 4.2.2 Loss of Nfkb2 in 4T1 cells is associated with an increase .............
    • in nuclear and cytoplasmic p50 levels..........................................103
    • 4.2.3 Loss of Nfkb2 sensitizes N202.1a cells to anoikis under ...............
    • non-adherent culture conditions in vitro .......................................103
    • 4.2.4 Silencing of Nfkb2 does not affect the proliferation of ...................
    • mouse mammary cancer cell lines ...............................................106
    • 4.2.5 Silencing of Nfkb2 does not affect the colony forming ...................
    • potential of mouse mammary cancer cell lines ...........................106
    • 4.2.6 Silencing of Nfkb2 increases the motility of 4T1 cells.................106
    • 4.2.7 Loss of Nfkb2 leads to EMT in 4T1 cells......................................109
    • 4.2.8 The motility of 4T1 cells is dependent on NF-kB activity............109
    • 4.2.9 The mammosphere forming potential of mammary cancer ...........
    • Nfkb2 silencing ...............................................................................112
    • 4.2.10 The mammosphere forming potential of mammary cancer ........
    • cell lines are dependent on NF-kB activity ...............................118 CHAPTER 5.........................................................................................................132 Elucidating the effects of Ser-222 phosphorylation of p52 on the phenotypes of mammary cancer cells ....................................................................................132 5 Elucidating the effects of Ser-222 phosphorylation of p52 on the phenotypes of mammary cancer cells ..........................................................133
    • 5.1 Introduction ..........................................................................................133
    • 5.2 Over-expression of phospho-mimetic p52 mutant in 4T1 cells .134
    • 5.2.1 Effects of over-expressing phospho-mimetic p52 mutant on .........
    • basal NF-κB activity........................................................................134
    • 5.2.2 Effects of over-expressing phospho-mimetic p52 mutants on .......
    • the sensitivity of 4T1 cells to anoikis ............................................134
    • 5.2.3 Effects of over-expressing phospho-mimetic p52 mutant on .........
    • mammosphere forming potential of 4T1 cells..............................136
    • 5.2.4 Effects of over-expressing phospho-mimetic p52 mutant on..........
    • the motility of 4T1 cells ..................................................................140
    • 5.3 Discussion ............................................................................................142
    • 5.4 Summary ...............................................................................................144 CHAPTER 6.........................................................................................................145 Identifying a correlation between levels of nuclear p52 and subtypes of breast cancer ...................................................................................................................145 6 Identifying a correlation between levels of nuclear p52 and subtypes of breast cancer .................................................................................................146
    • 6.1 Introduction ..........................................................................................146
    • 6.2 Identifying possible correlations between the levels of nuclear
    • p52 and ErbB2, vimentin or p63 in BRCA2-/- p53-/- tumours by
    • immuuno-histochemistry.............................................................................147
    • 6.2.1 Nuclear p52 levels correlate with p63 expression in a cohort ........
    • of BRCA2 -/- p53-/- tumours ..........................................................147
    • 6.3 Discussion ............................................................................................147
    • 6.4 Summary ...............................................................................................154 CHAPTER 7.........................................................................................................155 7 General Discussion ...................................................................................156
    • 7.1 Apoptosis and mammary gland involution....................................156
    • 7.2 Regulators of apoptosis as therapeutic targets in the prevention
    • of breast cancer metastasis ........................................................................156
    • 7.3 The NF-κB p52 subunit and its potential as a therapeutic target
    • in breast cancer metastasis ........................................................................157
    • 7.4 Strategies for targeting p52...............................................................160 Bibliography .......................................................................................................161 ADAMS, J. & WATT, F. 1993. Regulation of development and differentiation by the
    • extracellular matrix. Development, 117, 1183-1198. AGHA-MOHAMMADI, S., O'MALLEY, M., ETEMAD, A., WANG, Z., XIAO, X.
    • & LOTZE, M. 2004. Second-generation tetracycline-regulatable promoter:
    • minimal promoter offers tight basal leakiness. J. Gene Med., 6, 817-828. AL-HAJJ, M., WICHA, M. S., BENITO-HERNANDEZ, A., MORRISON, S. J. &
    • CLARKE, M. F. 2003. Prospective identification of tumorigenic breast cancer
    • cells. PNAS, 100, 3983-3988. ALISON, M. 2001. The Cancer Handbook, London, Nature Publishing Group. ALLRED, D. & MEDINA, D. 2008. The relevance of mouse models to understanding
    • Mammary Gland Biology and Neoplasia, 13, 279-288. ASHKENAZI, A. & DIXIT, V. 1998. Death receptors: Signaling and modulation.
    • Science, 281, 1305-1308. ASLAKSON, C. J. & MILLER, F. R. 1992. Selective events in the metastatic process
    • mouse mammary tumor. Cancer Res., 52, 1399-1405. ASSELIN-LABAT, M.-L., VAILLANT, F., SHERIDAN, J. M., PAL, B., WU, D.,
    • LINDEMAN, G. J. & VISVADER, J. E. 2010. Control of mammary stem cell
    • function by steroid hormone signalling. Nature, 465, 798-803. ATABAI, K., FERNANDEZ, R., HUANG, X., UEKI, I., KLINE, A., LI, Y.,
    • WERB, Z. & SHEPPARD, D. 2005. Mfge8 is critical for mammary gland
    • remodeling during involution. Mol. Biol. Cell, 16, 5528-5537. AUBELE, M., MATTIS, A., ZITZELSBERGER, H., WALCH, A., KREMER, M.,
    • HUTZLER, P., HOFLER, H. & WERNER, M. 1999. Intratumoral
    • comparative genomic hybridization. Cancer Genet. Cytogenet., 110, 94-102. BARRE, B. & PERKINS, N. 2010a. The Skp2 promoter integrates signaling through
    • the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and
    • apoptosis. Mol. Cell., 38, 524-538. BARRE, B. & PERKINS, N. 2010b. The Skp2 promoter integrates signalling through
    • the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and
    • apoptosis. Molecular cell, 38, 524-548. BASAK, S., SHIH, V. & HOFFMANN, A. 2008. Generation and Activation of
    • Multiple Dimeric Transcription Factors within the NF- B Signaling System. Molecular and Cellular Biology, 28, 3139-3150. BAUD, V. & KARIN, M. 2009. Is NF-kB a good target for cancer therapy? Hopes
    • and pitfalls. Nature Reviews Drug Discovery, 8, 33-40. BAUM, B., SETTLEMAN, J. & QUINLAN, M. P. 2008. Transitions between
    • Dev. Biol., 19, 294-308. BEG, A. A., SHA, W. C., BRONSON, R. T., GHOSH, S. & BALTIMORE, D. 1995.
    • component of NF-kB. Nature, 376, 167-170. BEIDLER, D. R., TEWARI, M., FRIESEN, P. D., POIRIER, G. & DIXIT, V. M.
    • 1995. The baculovirus p35 protein inhibits Fas- and tumor necrosis factor-
    • induced apoptosis. J. Biol. Chem., 270, 16526-16528. BEINKE, S. & LEY, S. 2004. Functions of NF-κB1 and NF-κB2 in immune cell
    • biology. Biochem. J., 382, 393-409. BISWAS, D. K. & IGLEHART, J. D. 2006. Linkage between EGFR family receptors
    • Physiol., 209, 645-652. BOMBONATI, A. & SGROI, D. C. 2011. The molecular pathology of breast cancer
    • progression. J Pathol, 223, 307-317. BONADONNA, G., HORTOBAGYI, G. & VALAGUSSA, P. 2006. Tetbook of
    • J. L. & KITTRELL, F. 2001. Nuclear-kB (NF-kB) regulates proliferation and
    • branching in mouse mammary epithelium. Mol. Biol. Cell, 12, 1445-1455. BRANTLEY, D., YULL, F., MURAOKA, R., HICKS, D., COOK, C. & KERR, L.
    • 2000. Dynamic expression and activity of NF-κB during post-natal mammary
    • gland morphogenesis. Mechanisms of Development, 97, 149-155. BUFALO, D., BIROCCIO, A., LEONETTI, C. & ZUPI, G. 1997. Bcl-2
    • line. FASEB J., 11, 947-953. CAAMANO, J. H., RIZZO, C. A., DURHAM, S. K., BARTON, D. S., RAVENTOZ-
    • SUAREZ, C., SNAPPER, C. M. & BRAVO, R. 1998. Nuclear factor (NF)-
    • kB2 (p100/p52) is required for normal splenic microarchitecture and B cell-
    • mediated immune responses. J. Exp. Med., 187, 185-196. CAMPBELL, K. J., WITTY, J. M., ROCHA, S. & PERKINS, N. 2006. Cisplatin
    • mimics ARF tumour suppressor regulation of RelA (p65) nuclear factor-kB
    • transactivation. Cancer Research, 66, 929-935. CANCER., C. G. O. H. F. I. B. 1996. Breast cancer and hormonal contraceptives:
    • collaborative reanalysis of individual data on 53297 with breast cancer and
    • 100239 women without breast cancer from 54 epidemiological studies. Lancet,
    • 347, 1713-1727. CANCER., C. G. O. H. F. I. B. 1997. Breast cancer and hormone replacement
    • therapy: collaborative reanalysis of data from 51 epidemiological studies of
    • 52705 women with breast cancer and 108411 women without breast cancer.
    • Lancet, 350, 1047-1059. CAO, Y. 2005. Opinion: Emerging mechanisms of tumour lymphangiogenesis and
    • lymphatic metastasis. Nature Reviews Cancer, 5, 735-743. CAO, Y., BONIZZI, G., SEAGROVES, T. N., GRETEN, F. R., JOHNSON, R. &
    • SCHMIDT, E. V. 2001a. IKKalpha provides an essential link between RANK
    • signaling and cyclin D1 expression during mammary gland development. Cell,
    • 107, 763-775. CAO, Y., BONIZZI, G., SEAGROVES, T. N., GRETEN, F. R., JOHNSON, R. &
    • SCHMIDT, E. V. 2001b. IKKalpha provides an essential link between RANK
    • signaling and cyclin D1 expression duringmammary gland development. Cell,
    • 107, 763-775. CAO, Y. & KARIN, M. 2003. NF-KB in mammary gland development and breast
    • cancer. Journal of Mammary Gland Biology and Neoplasia, 8, 215-223. CAO, Y., LUO, J. & KARIN, M. 2007. I B kinase kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. PNAS, 104, 15852-57. CAREY, L. 2010. Through a glass darkly: Advances in understanding breast cancer
    • biology, 2000-2010. Clinical Breast Cancer, 10, 188-195. CHAPMAN, R. S., LOURENCO, P., TONNER, E., FLINT, D., SELBERT, S.,
    • TAKEDA, K., AKIRA, S., CLARKE, A. R. & WATSON, C. J. 2000. The
    • role of Stat3 in apoptosis and mammary gland involution. Conditional deletion
    • of Stat3. Adv. Exp. Med. Biol., 480, 129-138. DEJARDIN, E., BONIZZI, G., BELLAHCENE, A., CASTRONOVO, V.,
    • MERVILLE, M. & V, B. 1995. Highly-expressed p100/p52 (NFKB2)
    • breast cancer cells. Oncogene, 11, 1835-1841. DEMICCO, E., KAVANAGH, K., ROMIEU-MOUREZ, R., WANG, X., SHIN, S.,
    • LANDESMANBOLLAG, E., SELDIN, D. & SONENSHEIN, G. 2005.
    • RelB/p52 NF- B Complexes Rescue an Early Delay in Mammary Gland Development in Transgenic Mice with Targeted Superrepressor I B- Expression and Promote Carcinogenesis of the Mammary Gland. Molecular and Cellular Biology, 25, 10136-
    • 10147. DIEHN, M., CHO, R. W., LOBO, N. A., KALISKY, T., DORIE, M. J., KULP, A. N.,
    • L. & CLARKE, M. F. 2009. Association of reactive oxygen species levels and
    • radioresistance in cancer stem cells. Nature, 458, 780-783. DYKXHOORN, D. M., WU, Y., XIE, H., YU, F., LAL, A., PETROCCA, F.,
    • MARTINVALET, D., SONG, E., LIM, B. & LIEBERMAN, J. 2009. miR-200
    • PLoS One., 4, e7181. EASTON, D. F. 1999. How many more breast cancer predisposition genes are there?
    • LANDESMANBOLLAG, E., SELDIN, D. & SONENSHEIN, G. 2005.
    • Inducible IKB Kinase/IKB Kinase E Expression Is Induced by CK2 and Promotes Aberrant Nuclear Factor-KB Activation in Breast Cancer Cells. Cancer Research, 65, 11375-11383. FATA, J. E., WERB, Z. & BISSELL, M. J. 2004. Regulation of mammary gland
    • enzymes. Breast Cancer Res., 6, 1-11. FERLAY, J., PARKIN, D. & STELIAROVA-FOUCHER, E. 2010. GLOBOCAN
    • 2008, Cancer Incidence and Mortality Worldwide. IARC CancerBase, 10. FIALKA, I., SCHWARZ, H., REICHMANN, E., OFT, M., BUSSLINGER, M. &
    • BEUG, H. 1996. The estrogen-dependent c-JunER protein causes a reversible
    • adherens junctions. Journal of Cell Biology, 132, 1115-1132. FORD, D., EASTON, D. F. & STRATTON, M. 1998. Genetic heterogeneity and
    • penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer
    • families. Am. J. Hum. Genet., 62, 334-345. FRANZOSO, G., CARLSON, L., POLJAK, L., SHORES, E. W., EPSTEIN, S.,
    • ANVER, M. 1998. Mice deficient in nuclear factor (NF)-kB2/p52 present with
    • microarchitecture. J. Exp. Med., 187. FRIEDENREICH, C. M., THUNE, I. & BRINTON, L. A. 1998. Epidemiologic issues
    • 83, 600-610. FUJII, H., MARSH, C., CAIRNS, P., SIDRANSKY, D. & GABRIELSON, E. 1996.
    • Genetic divergence in the clonal evolution of breast cancer. Cancer Res., 56,
    • 1493-1497. HAY, T., MATTHEWS, J. R., PIETZKA, L., LAU, A., CRANSTON, A., NYGREN,
    • O'CONNOR, M. & CLARKE, A. R. 2009. Poly(ADP-ribose) polymerase-1
    • inhibitor treatment regresses autochthonous Brca2/p53-mutant mammary
    • Cancer Res., 69, 3850-3855. HENNIGHAUSEN, L. & ROBINSON, G. W. 2001. Signaling pathways in mammary
    • gland development. 2001, 1, 467-475. HENS, J. & WYSOLMERSKI, J. 2005. Molecular mechanisms involved in the
    • formation of the embryonic mammary gland. Breast Cancer Research, 7, 220-
    • 224. HISCOX, S., DAVIES, E. & BARRETT-LEE, P. 2009. Aromatase inhibitors in
    • breast cancer. Maturitas, 63, 275-279. HOFFMANN, A., LEUNG, T. H. & BALTIMORE, D. 2003. Genetic analysis of NF-
    • kB/Rel transcription factors defines functional specificities. EMBO J., 22,
    • 5530-5539. HOVEY, R., TROTT, J. & VONDERHAAR, B. 2002. Establishing a framework for
    • Mammary Gland Biology and Neoplasia, 7, 17-38. HOWARD, B. & GUSTERSON, B. 2000. Human breast development. Journal of
    • Mammary Gland Biology and Neoplasia, 5, 119-137. HUBER, M. A., AZOITEI, N., BAUMANN, B., GRUNERT, S., SOMMER, A.,
    • PEHAMBERGER, H., KRAUT, N., BEUG, H. & WIRTH, T. 2004a. NF-
    • model of breast cancer progression. J. Clinical Investigation, 114, 569-581. HUBER, M. A., AZOITEI, N., BAUMANN, B., GRUNERT, S., SOMMER, A.,
    • PEHAMBERGER, H., KRAUT, N., BEUG, H. & WIRTH, T. 2004b. NF-kB
    • breast cancer progression. J. Clin. Invest., 114, 569-581. HUGO, H., ACKLAND, M. L., BLICK, T., LAWRENCE, M. G., CLEMENTS, J.
    • A., WILLIAMS, E. D. & THOMPSON, E. W. 2007. Epithelial-mesenchymal
    • Physiol., 213, 374-383. HUMPHREYS, R. C., KRAJEWSKA, M., KRNACIK, S., JAEGER, R., WEIHER,
    • H., KRAJEWSKI, S., REED, J. C. & ROSEN, J. M. 1996. Apoptosis in the
    • morphogenesis. Development, 122, 4013-4022. HUNTER, D. J., SPIEGELMAN, D. & ADAMI, H.-O. 1996. Cohort studies of fat
    • intake and the risk of breast cancer- a pooled analysis. N. Engl. J. Med., 334,
    • 356-361. ILLIOPOULUS, D., HIRSCH, H. A. & STRUHL, K. 2009. An epigenetic switch
    • involving NF-kB, Lin28, Let-7 MicroRNA and IL6 links inflammation to cell
    • transformation. Cell, 139, 693-706. JONES, D. H., NAKASHIMA, T., SANCHEZ, O. H., KOZIERADZKI, I.,
    • M. 2006. Regulation of cancer cell migration and bone metastasis by RANKL.
    • Nature, 440, 692-696. JORDAN, V. 2007. Tamoxifen: Catalyst for the change to targeted therapy. European
    • Journal of Cancer, 44, 30-38.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    61
    61%
  • No similar publications.

Share - Bookmark

Cite this article