LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Jing Ping (2002)
Publisher: Dept. of Mathematics Lulea Univ. of Technology
Languages: English
Types: Article
Subjects: QA

Classified by OpenAIRE into

arxiv: Mathematics::Symplectic Geometry, Mathematics::Differential Geometry
ACM Ref: ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
This paper contains a list of known integrable systems. It gives their recursion-, Hamiltonian-, symplectic- and cosymplectic operator, roots of their symmetries and their scaling symmetry.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Antonowicz M and Fordy A P, Coupled KdV equations with multi-Hamiltonian structures, Phys. D 28 (1987), 345-357.
    • Benny D J, Some properties of long nonlinear waves, Stud. Appl. Math. 52 (1973), 45-50.
    • Bilge A H, On the equivalence of linearization and formal symmetries as integrability tests for evolution equations, J. Phys. A 26, No. 24 (1993), 7511-7519.
    • Boiti M, Pempinelli F, and Tu G Z, The nonlinear evolution equations related to the Wadati-Konno-Ichikawa spectral problem, Progr. Theoret. Phys. 69, No. 1 (1983), 48-64.
    • Calogero F, The evolution partial differential equation ut = uxxx + 3(uxxu2 + 3u2xu) + 3uxu4, J. Math. Phys. 28, No. 3 (1987), 538-555.
    • Calogero F and Degasperis A, Reduction technique for matrix nonlinear evolution equations solvable by the spectral transform, J. Math. Phys. 22 (1981), 23-31.
    • [CDG76] Caudrey P J, Dodd R K and Gibbon J D, A new hierarchy of Korteweg-de Vries equation, Proc. Roy. Soc. London Ser. A 351 (1976), 407-422.
    • [Cho87a] Chou T, Symmetries and a hierarchy of the general KdV equation, J. Phys. A 20 (1987), 359-366.
    • [Cho87b] Chou T, Symmetries and a hierarchy of the general modified KdV equation, J. Phys. A 20 (1987), 367-374.
    • Chen H H, Lee Y C and Lin J E, On the direct construction of the inverse scattering operators of integrable nonlinear Hamiltonian systems, Phys. D 26 (1987), 165-170.
    • Cavalcante J A and Tenenblat K, Conservation laws for nonlinear evolution equations, J. Math. Phys. 29, No. 4 (1988), 1044-1049.
    • Dorfman I, Dirac structures and integrability of nonlinear evolution equations, John Wiley & Sons Ltd., Chichester, 1993.
    • Fokas A S and Fuchssteiner B, On the structure of symplectic operators and hereditary symmetries, Lett. al Nuovo Cimento 28, No. 8 (1980), 299-303.
    • Fuchssteiner B and Fokas A S, Symplectic structures, their Ba¨cklund transformations and hereditary symmetries, Phys. D 4 (1981), 47-60.
    • Fordy A P and Gibbons J, Integrable nonlinear Klein-Gordon equations and Toda Lattices, Comm. Math. Phys. 77 (1980), 21-30.
    • Fordy A P and Gibbons J, Factorization of operators. II, J. Math. Phys. 22, No. 6 (1981), 1170-1175.
    • Phys. 21, No. 6 (1980), 1318-1325.
    • [FOW87] Fuchssteiner B, Oevel W and Wiwianka W, Computer-algebra methods for investigation of hereditary operators of higher order soliton equations, Comput. Phys. Comm. 44 (1987), 47-55.
    • Fuchssteiner B, Application of hereditary symmetries to nonlinear evolution equations, Nonlinear Anal. 3, No. 11 (1979), 849-862.
    • Fuchssteiner B, The Lie algebra structure of degenerate Hamiltonian and biHamiltonian systems, Progr. Theoret. Phys. 68, No. 4 (1982), 1082-1104.
    • Go¨kta¸s U¨, Algorithmic Computation of Symmetries, Invariants and Recursion Operators for Systems of Nonlinear Evolution and Differential-Difference Equations, PhD thesis, Colorado School of Mines, Golden, CO, 1998.
    • Hirota R and Satsuma J, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A 85 (1981), 407-408.
    • Ibragimov N H, editor, CRC Handbook of Lie Group Analysis of Differential Equations, volume 1-3. CRC Press, Inc, Boca Raton, 1996.
    • Ibragimov N H and Sˇabat A B, Infinite Lie-Ba¨cklund algebras, Funktsional. Anal. i Prilozhen. 14, No. 4 (1980), 79-80.
    • Lett. A 91 (1982), 335-338.
    • Appl. 16, No, 1 (1982), 59-61.
    • Kaup D J, On the inverse scattering problem for cubic eigenvalue problems of the class ψxxx + 6qψx + 6rψ = λψ, Stud. Appl. Math. 62 (1980), 189-216.
    • Korteweg D J and de Vries G, On the change of form of long waves advancing in a rectangular canal, and a new type of long stationary waves, Philos. Mag. 39, No. 5 (1895), 422-443.
    • Konopelchenko B G, Nonlinear Integrable Equations, Springer - New York, 1987.
    • Lax P D, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490.
    • [LLS+83] Leo M, Leo R A, Soliani G, Solombrino L and Martina L, Lie-Ba¨cklund symmetries for the Harry Dym equation, Phys. Rev. D 27, No. 6 (1983), 1406-1408.
    • Phys. A 26, No. 22 (1993), L1169-L1174.
    • Magri F, A simple model of integrable Hamiltonian equation, J. Math. Phys. 19, No.
    • Mikha˘ılov A V, Shabat A B and Sokolov V V, The symmetry approach to classification of integrable equations, In What is integrability?, Editor Zakharov V E, Springer - Berlin, 1991, 115-184.
    • Oevel W, Rekursionsmechanismen fu¨r Symmetrien und Erhaltungssa¨tze in integrablen Systemen, PhD thesis, Universit¨at-Gesamthochschule Paderborn, Paderborn, 1984.
    • Oevel G, Reduktion integrabler Systeme auf ihre Multisoliton Mannigfaltigkeiten, PhD thesis, Universit¨at-Gesamthochschule Paderborn, Paderborn, 1990.
    • 25, No. 4 (1984), 918-922.
    • Olver P J, Evolution equations possessing infinitely symmetries, J. Math. Phys. 18, No. 6 (1977), 1212-1215.
    • Olver P J, Applications of Lie Groups to Differential Equations, second edition, Springer - New York, 1993.
    • Sawada K and Kotera T, A method of finding N-soliton solutions of the KdV and KdV-like equation, Progr. Theoret. Phys. 51 (1974), 1355-1367.
    • Sanders J A and Wang J P, Integrable systems and their recursion operators, Nonlinear Anal. 47, No. 8 (2001), 5213-5240.
    • [SW01b] Sanders J A and Wang J P, On recursion operators, Phys. D 149, No. 1-2 (2001), 1-10.
    • van Bemmelen T and Kersten P, Nonlocal symmetries and recursion operators of the Landau-Lifshitz equation, J. Math. Phys. 32, No. 7 (1991), 1709-1716.
    • Wang J P, Symmetries and Conservation Laws of Evolution Equations, PhD thesis, Vrije Universiteit, Amsterdam, 1998.
    • [Mag78] [Oev84]
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article