Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mason, Matthew J.; Farr, Matthew R. B. (2013)
Publisher: Cambridge University Press
Languages: English
Types: Article
Subjects: RC, R1

Classified by OpenAIRE into

mesheuropmc: otorhinolaryngologic diseases, sense organs
Introduction and aims: Tympanic middle ears have evolved multiple times independently among vertebrates, and share common features. We review flexibility within tympanic middle ears and consider its physiological and clinical implications.\ud Comparative anatomy: The chain of conducting elements is flexible: even the ‘single ossicle’ ears of most non-mammalian tetrapods are functionally ‘double ossicle’ ears due to mobile articulations between the stapes and extrastapes; there may also be bending within individual elements.\ud Simple models: Simple models suggest that flexibility will generally reduce the transmission of sound energy through the middle ear, although in certain theoretical situations flexibility within or between conducting elements might improve transmission. The most obvious role of middle-ear flexibility is to protect the inner ear from high-amplitude displacements.\ud Clinical implications: Inter-ossicular joint dysfunction is associated with a number of pathologies in humans. We examine attempts to improve prosthesis design by incorporating flexible components.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Merchant SN, Ravicz ME, Voss SE, Peake WT, Rosowski JJ. Middle ear mechanics in normal, diseased and reconstructed ears. J Laryngol Otol 1998;112:715-31
    • 2 Clack JA. Patterns and processes in the early evolution of the tetrapod ear. J Neurobiol 2002;53:251-64
    • 3 Lombard RE, Bolt JR. Evolution of the tetrapod ear: an analysis and reinterpretation. Biol J Linn Soc 1979;11:19-76
    • 4 Clack JA. The evolution of tetrapod ears and the fossil record. Brain Behav Evol 1997;50:198-212
    • 5 Manley GA. An evolutionary perspective on middle ears. Hear Res 2010;263:3-8
    • 6 Clack JA, Allin E. The evolution of single- and multipleossicle ears in fishes and tetrapods. In: Manley GA, Popper AN, Fay RR, eds. Evolution of the Vertebrate Auditory System. New York: Springer; 2004;128-63
    • 7 Lombard RE. The structure of the amphibian auditory periphery: a unique experiment in terrestrial hearing. In: Popper AN, Fay RR, eds. Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, 1980;121-38
    • 8 Bolt JR, Lombard RE. Evolution of the amphibian tympanic ear and the origin of frogs. Biol J Linn Soc 1985;24:83-99
    • 9 Maier W. Phylogeny and ontogeny of mammalian middle ear structures. Neth J Zool 1990;40:55-74
    • 10 Allin EF. Evolution of the mammalian middle ear. J Morphol 1975;147:403-38
    • 11 Meng J, Wang Y, Li C. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 2011; 472:181-5
    • 12 Ji Q, Luo Z-X, Zhang X, Yuan C-X, Xu L. Evolutionary development of the middle ear in Mesozoic therian mammals. Science 2009;326:278-81
    • 13 Rich TH, Hopson JA, Musser AM, Flannery TF, Vickers-Rich P. Independent origins of middle ear bones in monotremes and therians. Science 2005;307:910-14
    • 14 Rougier GW, Forasiepi AM, Martinelli AG. Comment on “Independent Origins of Middle Ear Bones in Monotremes and Therians” (II). Science 2005;309:1492b
    • 15 Mason MJ. Pathways for sound transmission to the inner ear in amphibians. In: Narins PM, Feng AS, Fay RR, Popper AN, eds. Hearing and Sound Communication in Amphibians. New York: Springer, 2007;147-83
    • 16 Jørgensen MB, Kanneworff M. Middle ear transmission in the grass frog, Rana temporaria. J Comp Physiol [A] 1998;182: 59-64
    • 17 Mason MJ, Narins PM. Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana I. The extrastapes. J Exp Biol 2002;205:3153-65
    • 18 Werner YL. Mechanical leverage in the middle ear of the American bullfrog, Rana catesbeiana. Hear Res 2003;175: 54-65
    • 19 Mason MJ, Narins PM. Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana II. The operculum. J Exp Biol 2002;205:3167-76
    • 20 Baird IL. The anatomy of the reptilian ear. In: Gans C, Parsons TS, eds. Biology of the Reptilia. New York: Academic Press, 1970;193-275
    • 21 Wever EG. The Reptile Ear: Its Structure and Function. Princeton: Princeton University Press, 1978
    • 22 Saunders JC, Duncan RK, Doan DE, Werner YL. The middle ear of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN, eds. Comparative Hearing: Birds and Reptiles. New York: Springer, 2000;13-69
    • 23 Wever EG, Werner YL. The function of the middle ear in lizards: Crotaphytus collaris (Iguanidae). J Exp Zool 1970;175:327-42
    • 24 Rosowski JJ, Peake WT, Lynch TJ, Leong R, Weiss TF. A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Macromechanical stage. Hear Res 1985;20:139-55
    • 25 Manley GA. The middle ear of the Tokay gecko. J Comp Physiol 1972;81:239-50
    • 26 Manley GA. Frequency response of the middle ear of geckos. J Comp Physiol 1972;81:251-8
    • 27 Werner YL, Montgomery LG, Safford SD, Igic PG, Saunders JC. How body size affects middle-ear structure and function and auditory sensitivity in gekkonoid lizards. J Exp Biol 1998;201: 487-502
    • 28 Saunders JC, Johnstone BM. A comparative analysis of middle-ear function in non-mammalian vertebrates. Acta Otolaryngol (Stockh) 1972;73:353-61
    • 29 Wever EG. The Reptile Ear: Its Structure and Function. Princeton: Princeton University Press, 1978;63
    • 30 Wever EG, Vernon JA. Auditory responses in the common box turtle. Proc Natl Acad Sci U S A 1956;42:962-5
    • 31 Lenhardt ML, Klinger RC, Musick JA. Marine turtle middleear anatomy. J Aud Res 1985;25:66-72
    • 32 Ridgway SH, Wever EG, McCormick JG, Palin J, Anderson JH. Hearing in the giant sea turtle, Chelonia mydas. Proc Natl Acad Sci U S A 1969;64:884-90
    • 33 Wever EG. The Reptile Ear: Its Structure and Function. Princeton: Princeton University Press, 1978;851
    • 34 Saunders JC. Auditory structure and function in the bird middle ear: an evaluation by SEM and capacitive probe. Hear Res 1985;18:253-68
    • 35 Gaudin EP. On the middle ear of birds. Acta Otolaryngol (Stockh) 1968;65:316-26
    • 36 Norberg RÅ. Skull asymmetry, ear structure and function and auditory localisation in Tengmalm's owl, Aegiolus funereus (Linné). Philos Trans Roy Soc B 1978;282:325-410
    • 37 Starck JM. Comparative anatomy of the external and middle ear of palaeognathous birds. Adv Anat Embryol Cell Biol 1995;131:1-137
    • 38 Gummer AW, Smolders JWT, Klinke R. Mechanics of a single-ossicle ear: I. The extra-stapedius of the pigeon. Hear Res 1989;39:1-13
    • 39 Pohlman AG. The position and functional interpretation of the elastic ligaments in the middle-ear region of Gallus. J Morphol 1921;35:229-62
    • 40 Smith G. The middle ear and columella of birds. Q J Microsc Sci 1904;48:11-22
    • 41 Mills R, Zhang J. Applied comparative physiology of the avian middle ear: the effect of static pressure changes in columellar ears. J Laryngol Otol 2006;120:1005-7
    • 42 Nummela S, Reuter T, Hemilä S, Holmberg P, Paukku P. The anatomy of the killer whale middle ear (Orcinus orca). Hear Res 1999;133:61-70
    • 43 Mason MJ. Morphology of the middle ear of golden moles (Chrysochloridae). J Zool 2003;260:391-403
    • 44 Fleischer G. Evolutionary principles of the mammalian middle ear. Adv Anat Embryol Cell Biol 1978;55:1-70
    • 45 Dahmann H. On the physiology of hearing; experimental investigations of the mechanics of the auditory ossicle chain, as well as on their behavior with sound and air pressure [in German]. Z Hals- Nasen- Ohrenheilkunde 1929;24:462-97
    • 46 Decraemer WF, Khanna SM, Funnell WRJ. Malleus vibration mode changes with frequency. Hear Res 1991;54:305-18
    • 47 Decraemer WF, Khanna SM. Modelling the malleus vibration as a rigid body motion with one rotational and one translational degree of freedom. Hear Res 1994;72:1-18
    • 48 Marquet J. The incudo-malleal joint. J Laryngol Otol 1981;95: 543-65
    • 49 Sim JH, Puria S. Soft tissue morphometry of the malleus-incus complex from micro-CT imaging. J Assoc Res Otolaryngol 2008;9:5-21
    • 50 Hinchcliffe R, Pye A. Variations in the middle ear of the Mammalia. J Zool 1969;157:277-88
    • 51 Mason MJ. Evolution of the middle ear apparatus in talpid moles. J Morphol 2006;267:678-95
    • 52 Segall W. Characteristics of the ear, especially the middle ear, in fossorial mammals, compared to those in the Manidae. Acta Anat (Basel) 1973;86:96-110
    • 53 Burda H, Bruns V, Hickman GC. The ear in subterranean Insectivora and Rodentia in comparison with ground-dwelling representatives. 1. Sound conducting system of the middle ear. J Morphol 1992;214:49-61
    • 54 Segall W. Morphological parallelisms of bulla and auditory ossicles in some insectivores and marsupials. Fieldiana Zool 1970;51:169-205
    • 55 Wible JR, Wang Y, Li C, Dawson MR. Cranial anatomy and relationships of a new ctenodactyloid (Mammalia, Rodentia) from the Early Eocene of Hubei Province, China. Ann Carnegie Mus 2005;74:91-150
    • 56 Doran AHG. Morphology of the mammalian ossicula auditûs. Transactions of the Linnean Society of London. Second series: Zoology 1878;1:371-497
    • 57 Argyle EC, Mason MJ. Middle ear structures of Octodon degus (Rodentia: Octodontidae), in comparison with those of subterranean caviomorphs. J Mammal 2008;89:1447-55
    • 58 Mason MJ. The middle ear apparatus of the tuco-tuco Ctenomys sociabilis (Rodentia, Ctenomyidae). J Mammal 2004;85:797-805
    • 59 Amin S, Tucker AS. Joint formation in the middle ear: lessons from the mouse and guinea pig. Dev Dyn 2006;235:1326-33
    • 60 Burda H. Morphology of the middle and inner ear in some species of shrews (Insectivora, Soricidae). Acta Sc Nat Brno 1979;13:1-46
    • 61 Zeller U. Ontogenetic evidence for cranial homologies in monotremes and therians, with special reference to Ornithorhynchus. In: Szalay FS, Novacek MJ, McKenna MC, eds. Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. New York: Springer-Verlag, 1993;95-107
    • 62 Gates GR, Saunders JC, Bock GR, Aitkin LM, Elliott MA. Peripheral auditory function in the platypus, Ornithorhynchus anatinus. J Acoust Soc Am 1974;56:152-6
    • 63 Chien W, Northrop C, Levine S, Pilch BZ, Peake WT, Rosowski JJ et al. Anatomy of the distal incus in humans. J Assoc Res Otolaryngol 2009;10:485-96
    • 64 Funnell WR, Heng Siah T, McKee MD, Daniel SJ, Decraemer WF. On the coupling between the incus and the stapes in the cat. J Assoc Res Otolaryngol 2005;6:9-18
    • 65 Karmody CS, Northrop CC, Levine SR. The incudostapedial articulation: new concepts. Otol Neurotol 2009;30:990-7
    • 66 Mason MJ, Lai FWS, Li J-G, Nevo E. Middle ear structure and bone conduction in Spalax, Eospalax and Tachyoryctes mole-rats (Rodentia: Spalacidae). J Morphol 2010;271:462-72
    • 67 Møller AR. Transfer function of the middle ear. J Acoust Soc Am 1963;35:1526-34
    • 68 Guinan JJ, Peake WT. Middle-ear characteristics of anesthetized cats. J Acoust Soc Am 1967;41:1237-61
    • 69 Decraemer WF, Khanna SM. Measurement, visualization and quantitative analysis of complete three-dimensional kinematical data sets of human and cat middle ear. In: Gyo K, Wada H, Hato N, Koike T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;3-10
    • 70 Manley GA, Johnstone BM. Middle-ear function in the guinea pig. J Acoust Soc Am 1974;56:571-6
    • 71 Saunders JC, Summers RM. Auditory structure and function in the mouse middle ear: an evaluation by SEM and capacitive probe. J Comp Phys [A] 1982;146:517-25
    • 72 Wilson JP, Bruns V. Middle-ear mechanics in the CF-bat Rhinolophus ferrumequinum. Hear Res 1983;10:1-13
    • 73 de la Rochefoucauld O, Olson ES. A sum of simple and complex motions on the eardrum and manubrium in gerbil. Hear Res 2010;263:9-15
    • 74 Gyo K, Aritomo H, Goode RL. Measurement of the ossicular vibration ratio in human temporal bones by use of a video measuring system. Acta Otolaryngol (Stockh) 1987;103:87-95
    • 75 Kirikae I. The Structure and Function of the Middle Ear. Tokyo: University of Tokyo Press, 1960
    • 76 Fischler H, Frei EH, Spira D, Rubinstein M. Dynamic response of middle ear structures. J Acoust Soc Am 1967;41: 1220-31
    • 77 Elpern BS, Greisen O, Andersen HC. Experimental studies on sound transmission in the human ear. VI. Clinical and experimental observations on non-otosclerotic ossicle fixation. Acta Otolaryngol (Stockh) 1965;60:223-30
    • 78 Sim JH, Puria S, Steele C. Three-dimensional measurements and analysis of the isolated malleus-incus complex. In: Gyo K, Wada H, Hato N, Koike T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;61-7
    • 79 Willi UB, Ferrazzini MA, Huber AM. The incudo-malleolar joint and sound transmission losses. Hear Res 2002;174:32-44
    • 80 Willi UB, Ferrazzini MA, Huber AM. The mobility of the incudo-malleolar joint and associated middle-ear transmission losses. In: Gyo K, Wada H, Hato N, Koike T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004; 56-60
    • 81 Ravicz M, Peake WT, Nakajima HH, Merchant SN, Rosowski JJ. Modeling flexibility in the human ossicular chain: comparison to ossicular fixation data. In: Gyo K, Wada H, Hato N, Koike T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;91-8
    • 82 Nakajima HH, Ravicz ME, Merchant SN, Peake WT, Rosowski JJ. Experimental ossicular fixations and the middle ear's response to sound: evidence for a flexible ossicular chain. Hear Res 2005;204:60-77
    • 83 Gundersen T, Høgmoen K. Holographic vibration analysis of the ossicular chain. Acta Otolaryngol (Stockh) 1976;82:16-25
    • 84 Cancura W. On the statics of malleus and incus and on the function of the malleus-incus joint. Acta Otolaryngol (Stockh) 1980;89:342-4
    • 85 Hüttenbrink K-B. The mechanics of the middle-ear at static air pressures: the role of the ossicular joints, the function of the middle-ear muscles and the behaviour of stapedial prostheses. Acta Otolaryngol Suppl (Stockh) 1988;451:1-35
    • 86 Rosowski JJ, Carney LH, Lynch TJ, Peake WT. The effectiveness of external and middle ears in coupling acoustic power into the cochlea. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A, eds. Lecture Notes in Biomathematics vol. 64: Peripheral Auditory Mechanisms. New York: SpringerVerlag, 1986;3-12
    • 87 Manley GA. Some aspects of the evolution of hearing in vertebrates. Nature 1971;230:506-9
    • 88 Megela-Simmons A, Moss CF, Daniel KM. Behavioral audiograms of the bullfrog (Rana catesbeiana) and the green tree frog (Hyla cinerea). J Acoust Soc Am 1985;78:1236-44
    • 89 Feng AS, Narins PM, Xu C-H, Lin W-Y, Yu Z-L, Qiu Q et al. Ultrasonic communication in frogs. Nature 2006;440: 333-6
    • 90 Christensen-Dalsgaard J. Vertebrate pressure-gradient receivers. Hear Res 2011;273:37-45
    • 91 Heffner RS, Koay G, Heffner HE. Hearing in American leafnosed bats. III: Artibeus jamaicensis. Hear Res 2003;184: 113-22
    • 92 Overstreet EH, Ruggero MA. Development of wide-band middle ear transmission in the Mongolian gerbil. J Acoust Soc Am 2002;111:261-70
    • 93 Puria S, Allen JB. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. J Acoust Soc Am 1998;104:3463-81
    • 94 Hato N, Gyo K, Stenfelt S, Welsh JT, Goode RL. Time delay of acoustic transmission in human middle ear. In: Gyo K, Wada H, Hato N, Koike T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;51-5
    • 95 Ravicz ME, Cooper NP, Rosowski JJ. Gerbil middle-ear sound transmission from 100 Hz to 60 kHz. J Acoust Soc Am 2008; 124:363-80
    • 96 Puria S, Steele C. Tympanic-membrane and malleus-incuscomplex co-adaptations for high-frequency hearing in mammals. Hear Res 2010;263:183-90
    • 97 Mason MJ, Willi UB, Narins PM. Comments on “Tympanicmembrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals”, by Sunil Puria & Charles Steele. Hear Res 2010;267:1-3
    • 98 Lavender D, Taraskin SN, Mason MJ. Mass distribution and rotational inertia of “microtype” and “freely mobile” middle ear ossicles in rodents. Hear Res 2011;282:97-107
    • 99 Funnell WRJ, Khanna SM, Decraemer WF. On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum. J Acoust Soc Am 1992;91:2082-90
    • 100 Purgue AP, Narins PM. Mechanics of the inner ear of the bullfrog (Rana catesbeiana): the contact membranes and the periotic canal. J Comp Physiol [A] 2000;186:481-8
    • 101 Narins PM. Reduction of tympanic membrane displacement during vocalization of the arboreal frog, Eleutherodactylus coqui. J Acoust Soc Am 1992;91:3551-7
    • 102 Hetherington TE, Lombard RE. Electromyography of the opercularis muscle of Rana catesbeiana: an amphibian tonic muscle. J Morphol 1983;175:17-26
    • 103 Narins PM, Lewis ER, Purgue AP, Bishop PJ, Minter LR, Lawson DP. Functional consequences of a novel middle ear adaptation in the central African frog Petropedetes parkeri (Ranidae). J Exp Biol 2001;204:1223-32
    • 104 Purgue AP, Narins PM. A model for energy flow in the inner ear of the bullfrog (Rana catesbeiana). J Comp Phys [A] 2000;186:489-95
    • 105 Larsen ON, Dooling RJ, Ryals BM. Roles of intracranial air pressure in bird audition. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E, eds. Diversity in Auditory Mechanisms. Singapore: World Scientific, 1997;11-17
    • 106 Kobrak HG. The Middle Ear. Chicago: University of Chicago Press, 1959
    • 107 Tideholm B, Carlborg B, Jönsson S, Bylander-Groth A. Continuous long-term measurements of the middle ear pressure in subjects without a history of ear disease. Acta Otolaryngol (Stockh) 1998;118:369-74
    • 108 Tonndorf J, Khanna SM. Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 1972;52:1221-33
    • 109 Dirckx JJ, Decraemer WF. Human tympanic membrane deformation under static pressure. Hear Res 1991;51:93-105
    • 110 Murakami S, Gyo K, Goode RL. Effect of middle ear pressure change on middle ear mechanics. Acta Otolaryngol (Stockh) 1997;117:390-5
    • 111 Ladak HM, Decraemer WF, Dirckx JJ, Funnell WRJ. Response of the cat eardrum to static pressures: mobile versus immobile malleus. J Acoust Soc Am 2004;116:3008-21
    • 112 Tideholm B, Jönsson S, Carlborg B, Welinder R, Grenner J. Continuous 24-hour measurement of middle ear pressure. Acta Otolaryngol (Stockh) 1996;116:581-8
    • 113 Djupesland G. Middle ear muscle reflexes elicited by acoustic and nonacoustic stimulation. Acta Otolaryngol Suppl (Stockh) 1964;188:287-92
    • 114 Djupesland G. Electromyography of the tympanic muscles in man. Int Audiol 1965;4:34-41
    • 115 Klockhoff I, Anderson H. Reflex activity in the tensor tympani muscle recorded in man. Acta Otolaryngol (Stockh) 1960;51: 184-8
    • 116 Ingelstedt S, Jonson B. Mechanisms of the gas exchange in the normal human middle ear. Acta Otolaryngol Suppl (Stockh) 1966;224:452-61
    • 117 Bell A. How do middle ear muscles protect the cochlea? Reconsideration of the intralabyrinthine pressure theory. J Hear Sci 2011;1:9-23
    • 118 Pang XD, Peake WT. How do contractions of the stapedius muscle alter the acoustic properties of the ear? In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A, eds. Peripheral Auditory Mechanisms. New York: Springer-Verlag, 1986;36-43
    • 119 Love JT, Stream RW. The biphasic acoustic reflex: a new perspective. Laryngoscope 1978;88:298-313
    • 120 Jahrsdoerfer RA, Aguilar EA, Yeakley JW, Cole RR. Treacher Collins syndrome: an otologic challenge. Ann Otol Rhinol Laryngol 1989;98:807-12
    • 121 Belal A, Stewart TJ. Pathological changes in the middle ear joints. Ann Otol Rhinol Laryngol 1974;83:159-67
    • 122 Ceruti S, Stinckens C, Cremers CWRJ, Casselman JW. Temporal bone anomalies in the branchio-oto-renal syndrome: detailed computed tomographic and magnetic resonance imaging findings. Otol Neurotol 2002;23:200-7
    • 123 Schuknecht HF. Congenital aural atresia. Laryngoscope 1989; 908-17
    • 124 Lempert J, Wolff D. Histopathology of the incus and the head of the malleus in cases of stapedial ankylosis. Arch Otolaryngol 1945;42:339-67
    • 125 Belal A. Presbycusis: physiological or pathological. J Laryngol Otol 1975;89:1011-25
    • 126 Etholm B, Belal A. Senile changes in the middle ear joints. Ann Otol Rhinol Laryngol 1974;83:49-54
    • 127 Rawool VW, Harrington BT. Middle ear admittance and hearing abnormalities in individuals with osteoarthritis. Audiol Neurootol 2007;12:127-36
    • 128 Toppila E, Pyykkö I, Starck J. Age and noise-induced hearing loss. Scand Audiol 2001;30:236-44
    • 129 Gussen R. Atypical ossicle joint lesions in rheumatoid arthritis with sicca syndrome (Sjögren syndrome). Arch Otolaryngol 1977;103:284-6
    • 130 Ozturk A, Yalcin S, Kaygusuz I, Sahin S, Gok U, Karlidag T et al. High-frequency hearing loss and middle ear involvement in rheumatoid arthritis. Am J Otolaryngol 2004;25:411-17
    • 131 Salvinelli F, Cancilleri F, Casale M, Luccarelli V, Di Peco V, D'Ascanio L et al. Hearing thresholds in patients affected by rheumatoid arthritis. Clin Otolaryngol 2004;29:75-9
    • 132 Takatsu M, Higaki M, Kinoshita H, Mizushima Y, Koizuka I. Ear involvement in patients with rheumatoid arthritis. Otol Neurotol 2005;26:755-61
    • 133 Colletti V, Fiorino FG, Bruni L, Biasi D. Middle ear mechanics in subjects with rheumatoid arthritis. Int J Audiol 1997;36: 136-46
    • 134 Moffat DA, Ramsden RT, Rosenberg JN, Booth JB, Gibson WPR. Otoadmittance measurements in patients with rheumatoid arthritis. J Laryngol Otol 1977;91:917-27
    • 135 Raut V, Cullen J, Cathers G. Hearing loss in rheumatoid arthritis. J Otolaryngol 2001;30:289-94
    • 136 Özcan M, Karakus F, Gündüz O, Tuncel Ü, Sahin H. Hearing loss and middle ear involvement in rheumatoid arthritis. Rheumatol Int 2002;22:16-19
    • 137 García Callejo FJ, Conill Tobías N, Muñoz Fernández N, de Paula Vernetta C, Alonso Castañeira I, Marco Algarra JM. Hearing impairment in patients with rheumatoid arthritis [in Spanish]. Acta Otorhinolaringol Esp 2007;58:232-8
    • 138 Murdin L, Patel S, Walmsley J, Yeoh L. Hearing difficulties are common in patients with rheumatoid arthritis. Clin Rheumatol 2008;27:637-40
    • 139 Ikiz AO, Unsal E, Kirkim G, Erdag TK, Guneri EA. Hearing loss and middle ear involvement in patients with juvenile idiopathic arthritis. Int J Pediat Otorhinolaryngol 2007;71:1079-85
    • 140 Pau HW. Footplate perforation caused by TORP's; acoustic trauma caused by surgical noise. In: Hüttenbrink K-B, ed. Middle Ear Mechanics in Research and Otosurgery. Dresden: Dresden University of Technology, 1997;207-13
    • 141 Marquet J. “Stapedotomy” technique and results. Am J Otol 1985;6:63-7
    • 142 Redfors YD, Möller C. Otosclerosis: thirty-year follow-up after surgery. Ann Otol Rhinol Laryngol 2011;120:608-14
    • 143 Mills R. Applied comparative anatomy of the avian middle ear. J R Soc Med 1994;87:155-6
    • 144 Mills R, Zadrozniak M, Jie Z. The motion of conventional and novel total ossicular replacement prostheses during changes in static pressure. Otolaryngol Head Neck Surg 2007;137:762-5
    • 145 Nishihara S, Goode RL. Experimental study of the acoustic properties of incus replacement prostheses in a human temporal bone model. Otol Neurotol 1994;15:485-94
    • 146 Morris DP, Bance M, van Wijhe RG, Kiefte M, Smith R. Optimum tension for partial ossicular replacement prosthesis reconstruction in the human middle ear. Laryngoscope 2004; 114:305-8
    • 147 Feenstra L, Vlaming MS. Laser inferometry with human temporal bones. Adv Otorhinolaryngol 1987;37:36-8
    • 148 Goode RL. The ideal middle ear prosthesis. In: Hüttenbrink K-B, ed. Middle Ear Mechanics in Research and Otosurgery. Dresden: Dresden University of Technology, 1997;169-74
    • 149 Goode RL, Yamada H. A constant tension middle ear ossicular replacement prosthesis: why don't we have one? Hear Res 2010;263:235
    • 150 Goode RL, Honda N, Maetani T. Self-adjusting ossicular replacement prosthesis - studies in a temporal bone model. Trans Am Otol Soc 2004;92
    • 151 Abel EW, Abraham F, Mills RP. A self-adjusting ossicular replacement prosthesis. Hear Res 2010;263:250
    • 152 Arechvo I, Beleites T, Lasurashvili N, Bornitz M, Zahnert T. A new TORP with a resilient joint: experimental data from human temporal bones. Hear Res 2010;263:235
    • 153 Yamada H, Goode RL. A self-adjusting ossicular prosthesis containing polyurethane sponge. Otol Neurotol 2010;31: 1404-8
    • 154 Arechvo I, Bornitz M, Lasurashvili N, Zahnert T, Beleites T. New total ossicular replacement prostheses with a resilient joint: experimental data from human temporal bones. Otol Neurotol 2012;33:60-6
    • 155 Bornitz M, Zahnert T, Hüttenbrink K-B, Hardtke H-J. Design considerations for length variable prostheses: finite element model simulations. In: Gyo K, Wada H, Hato N, Koike T, eds. Proceedings of the 3rd Symposium on Middle Ear Mechanics in Research and Otology. Singapore: World Scientific Publishing, 2004;153-60
    • 156 Manley GA. The lessons of middle-ear function in nonmammals: improving columellar prostheses. J R Soc Med 1995;88:367-8
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article