LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Davies, Laura; Jakob, C.; Cheung, K.; Del Genio, A.; Hill, A.; Hume, T.; Keane, Richard John; Komori, T.; Larson, V. E.; Lin, Y.; Liu, X.; Neilsen, B. J.; Petch, J.; Plant, R. S.; Singh, M. S.; Shi, X.; Song, X.; Wang, W.; Whitall, M. A.; Wolf, A.; Xie, S.; Zhang, G.; Met Office (2013)
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects: 551
Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arakawa, A., and W. Schubert (1974), Interaction of a cumulus cloud ensemble with the large-scale environment, Part 1, J. Atmos. Sci., 31, 674-701, doi:10.1175/1520-0469(1974)031<0674:IOACCE> 2.0.CO;2.
    • Ball, M. A., and R. S. Plant (2008), Comparison of stochastic parameterization approaches in a single-column model, Phil. Trans. Roy. Soc., 366, 2605-2623, doi:10.1098/rsta.2011.0377.
    • Bechtold, P., et al. (2000), A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. II: Intercomparison of single-column models and a cloud-resolving model, Q. J. R. Meteorolog. Soc., 126(564), 865-888, doi:10.1002/qj.49712656404.
    • Boville, B. A., P. J. Rasch, J. J. Hack, and J. R. McCaa (2006), Representation of clouds and precipitation processes in the Community Atmosphere Model version 3 (CAM3), J. Climate, 19(11), 2184-2198, doi:10.1175/JCLI3749.1.
    • Bringi, V. N., and V. Chandrasekar (2001), Polarimetric Doppler Weather Radar: Principles and Applications, 636 pp., Cambridge University Press, The Edinburgh Building, Cambridge, CB2 2RU, UK.
    • Chou, M., M. J. Suarez, C. H. Ho, M. M. H. Yan, and K. T. Lee (1998), Parameterizations for cloud overlapping and shortwave single scattering properties for use in general circulation and cloud ensemble models, J. Climate, 11, 202-214, doi:10.1175/1520- 0442(1998)011<0202:PFCOAS>2.0.CO;2.
    • Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. W. Williamson, B. P. Briegleb, C. M. Bitz, S.-J. Lin, and M. Zhang (2006), The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3), J. Climate, 19, 2144-2161, doi:10.1175/JCLI3760.1.
    • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood (2005), A new dynamical core for the Met Office's global and regional modelling of the atmosphere, Q. J. R. Meteorol. Soc., 131, 1759-1782, doi:10.1256/qj.04.101.
    • Del Genio, A., M.-S. Yao, W. Kovari, and K.-W. Lo (1996), A prognostic cloud water parameterization for global climate models, J. Climate, 9, 270-304, doi:10.1175/1520-0442(1996)009<0270:APCWPF>2.0.CO;2.
    • Del Genio, A., W. Kovari, M.-S. Yao, and J. Jonas (2005), Cumulus microphysics and climate sensitivity, J. Climate, 18, 2376-2387, doi:10.1175/JCLI3413.1.
    • Derbyshire, S. H., A. V. Maidens, S. F. Milton, R. A. Stratton, and M. R. Willett (2011), Adaptive detrainment in a convective parametrization, Q. J. R. Meteorolog. Soc., 137(660), 1856-1871, doi:10.1002/qj.875.
    • Edwards, J., and A. Slingo (1996), Studies with a flexible new radiation code. Part I: Choosing a configuration for a large-scale model, Q. J. R. Meteorol. Soc., 122, 689-719, doi:10.1002/qj.49712253107.
    • Emanuel, K., and M. Zivkovic-Rothman (1999), Development and evaluation of a convection scheme for use in climate models, J. Atmos. Sci., 56(11), 1766-1782, doi:10.1175/1520-0469(1999)056< 1766:DAEOAC>2.0.CO;2.
    • EMC, (2003), The GFS atmospheric model, Technical report, National Oceanic and Atmospheric Administration, US Department of Commerce.
    • Fels, S., and M. Schwarzkopf (1975), The simplified exchange approximation: A new method for radiative transfer calculations, J. Atmos. Sci., 37, 2265-2297, doi:10.1175/1520-0469(1975)032<1475: TSEAAN>2.0.CO;2.
    • Freidenreich, S. M., and V. Ramaswamy (1999), A new multiple-band solar radiative parameterization for general circulation models, J. Geophys. Res., 104(D24), 31389-31409, doi:10.1029/1999JD900456.
    • Fridlind, A. M., et al. (2012), A comparison of TWP-ICE observational data with cloud-resolving model results, J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.
    • Fu, Q., and K. N. Liou (1993), Parameterization of the radiative properties of cirrus clouds, J. Atmos. Sci., 50, 2008-2025, doi:10.1175/1520- 0469(1993)050<2008:POTRPO>2.0.CO;2.
    • GAMDT (2004), The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations, J. Climate, 17, 4641-4673, doi:10.1175/JCLI-3223.1.
    • Ghan, S., et al. (2000), A comparison of single column model simulations of summertime midlatitude continental convection, J. Geophys. Res., 105(D2), 2091-2124, doi:10.1029/1999JD900971.
    • Golaz, J.-C., V. Larson, and W. Cotton (2002), A PDF-based model for boundary layer clouds. Part I: Method and model description, J. Atmos. Sci., 59, 3540-3551, doi:10.1175/1520-0469(2002)059<3540: APBMFB>2.0.CO;2.
    • Grabowski, W. W., et al. (2006), Daytime convective development over land: A model intercomparison based on LBA observations, Q. J. Roy. Meteor. Soc., 132, 317-344, doi:10.1256/qj.04.147.
    • Grant, A. (2001), Cloud-base fluxes in the cumulus-capped boundary layer, Q. J. Roy. Meteor. Soc., 127(572), 407-421, doi:10.1002/ qj.49712757209.
    • Gray, M. E. B., J. Petch, S. H. Derbyshire, A. R. Brown, A. P. Lock, H. A. Swann, and P. R. A. Brown (2001), Version 2.3 of the Met. Office Large Eddy Model: Part II. Scientific documentation. Met O (APR) Turbulence and Diffusion Note. No. 276.
    • Gregory, D. (2001), Estimation of entrainment rate in simple models of convective clouds, Q. J. R. Meteorol. Soc., 127, 53-72, doi:10.1002/qj.49712757104.
    • Gregory, D., and P. R. Rowntree (1990), A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure, Mon. Wea. Rev., 118, 1483-1506, doi:10.1175/1520- 0493(1990)118<1483:AMFCSW>2.0.CO;2.
    • Guichard, F., et al. (2004), Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models, Q. J. Roy. Meteor. Soc., 130, 3139-3171, doi:10.1256/qj.03.145.
    • Hack, J. J., and J. A. Pedretti (2000), Assessment of solution uncertainties in single-column modelling frameworks, J. Climate, 13(10), 352-365, doi:10.1175/1520-0442(2000)013<0352:AOSUIS>2.0.CO;2.
    • Held, I. M., R. S. Hemler, and V. Ramasway (1993), Radiativeconvective equilibrium with explicit two-dimensional moist convection, J. Atmos. Sci., 50, 3909-3927, doi:10.1175/1520-0469(1993)050<3909: RCEWET>2.0.CO;2.
    • Holtslag, A. A. M., and B. A. Boville (1993), Local versus nonlocal boundary-layer diffusion in a global climate model, J. Climate, 6(10), 1825-1842, doi:10.1175/1520-0442(1993)006<1825:LVNBLD> 2.0.CO;2.
    • Hong, S., and H. Pan (1996), Nonlocal boundary layer vertical diffusion in a medium-range forecast model, Mon. Wea. Rev., 124(10), 2322-2339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.
    • Hume, T., and C. Jakob (2005), Ensemble Single Column Modelling (ESCM) in the tropical western Pacific: Forcing datasets and uncertainty analysis, J. Geophys. Res., 110, D13109, doi:10.1029/2004JD005704.
    • Hume, T., and C. Jakob (2007), Ensemble Single Column Model (ESCM) validation in the tropical western Pacific, J. Geophys. Res., 112, D10206, doi:10.1029/2006JD008018.
    • JMA (2007), Outline of the Operational Forecast and Analysis System of the Japan Meteorological Agency. http://www.jma.go.jp/jma/jma-eng/ jma-center/nwp/outline-nwp/index.htm.
    • Jordan, P., A. Seed, and P. Weinmann (2003), A stochastic model of radar measurement errors in rainfall accumulations at catchment scale, J. Hydro., 4, 841-855, doi:10.1175/1525-7541(2003)004<0841: ASMORM>2.0.CO;2.
    • Joss, J., and A. Waldvogel (1990), Precipitation Measurement and Hydrology. Radar in Meteorology, chapter 29a, pp. 577-606, Academic Press, Boston, MA, USA.
    • Keenan, T. D., K. Glasson, F. Cummings, T. S. Bird, J. Keller, and J. Lutz (1998), The BMRC/NCAR C-band polarimetric (CPOL) radar system, J. Atmos. Oceanic Technol., 15, 871-886, doi:10.1175/1520- 0426(1998)015<0871:TBNCBP>2.0.CO;2.
    • Khairoutdinov, M., and D. Randall (2003), Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities, J. Atmos. Sci., 60, 607-625, doi:10.1175/1520- 0469(2003)060<0607:CRMOTA>2.0.CO;2.
    • Khairoutdinov, M. F., and Y. L. Kogan (1999), A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer, J. Atmos. Sci., 56(13), 2115-2131, doi:10.1175/1520-0469(1999)056<2115: ALESMW>2.0.CO;2.
    • Kiehl, J., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch (1998), The national center for atmospheric research community climate model: CCM3*, J. Climate, 11(6), 1131-1149, doi:10.1175/1520- 0442(1998)011<1131:TNCFAR>2.0.CO;2.
    • Larson, V. E., and J.-C. Golaz (2005), Using probability density functions to derive consistent closure relationships among higher-order moments, Mon. Wea. Rev., 133, 1023-1042, doi:10.1175/MWR2902.1.
    • Larson, V. E., D. P. Schanen, M. Wang, M. Ovchinnikov, and S. Ghan (2012), PDF parameterization of boundary layer clouds in models with horizontal grid spacings from 2 to 16 km, Mon. Wea. Rev., 140, 285-306, doi:10.1175/MWR-D-10-05059.1.
    • Lin, Y., et al. (2012), TWP-ICE global atmospheric model intercomparison: Convection responsiveness and resolution impact, J. Geophys. Res., 117, D09111, doi:10.1029/2011JD017018.
    • Liu, X., and J. Penner (2005), Ice nucleation parameterization for global models, Meteorol. Z., 14(4), 499-514, doi:10.1127/0941-2948/ 2005/0059.
    • Liu, X., J. E. Penner, S. J. Ghan, and M. Wang (2007), Inclusion of ice microphysics in the NCAR community atmospheric model version 3 (CAM3), J. Climate, 20, 4526-4547, doi:10.1175/JCLI4264.1.
    • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith (2000), A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests, Mon. Wea. Rev., 128, 3187-3199, doi:10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.
    • Lowe, P. (1977), An approximating polynomial for the computation of saturation vapor pressure, J. Appl. Meteorol., 16, 100-102, doi:10.1175/1520-0450(1977)016<0100:AAPFTC>2.0.CO;2.
    • MacVean, M., and P. Mason (1990), Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models, J. Atmos. Sci., 47(8), 1012-1030, doi:10.1175/1520-0469 (1990)047<1012:CTEITS>2.0.CO;2.
    • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton (2006), The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology, J. Climate, 19(7), 1274-1301, doi:10.1175/JCLI3636.1.
    • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace (2008), The tropical warm pool international cloud experiment, Bull. Amer. Meteor. Soc., 89, 629-645, doi:10.1175/BAMS-89-5-629.
    • McClatchey, R. A., R. W. Fenn, J. Selby, F. E. Volz, and J. S. Garing, (1972), The Tropical Warm Pool International Cloud Experiment, Technical Report 411, Air Force Cambridge Research Laboratory Environmental Research Paper.
    • Mellor, G. L., and T. Yamada (1974), A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791-1806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.
    • Moorthi, S., and M. J. Suarez (1992), Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models, Mon. Wea. Rev., 120, 978-1002, doi:10.1175/1520- 0493(1992)120<0978:RASAPO>2.0.CO;2.
    • Morrison, H., G. Thompson, and V. Tatarskii (2009), Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes, Mon. Wea. Rev., 137(3), 991-1007, doi:10.1175/2008MWR2556.1.
    • Nakagawa, M., (2009), Outline of the high resolution global model at the Japan meteorological agency, RSMC Tokyo-Typhoon Center Technical Review, 11(1-13), Available from http://www.jma.go.jp/jma/jma--eng/ jma--center/rsmc--hp--pub--eg/techrev/text11--1.pdf.
    • Pan, H., and W. Wu (1995), Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note, No. 409, 40 pp. [Available from NCEP, 5200 Auth Road, Washington, DC 20233].
    • Plant, R. S., and G. C. Craig (2008), A stochastic parameterization for deep convection based on equilibrium statistics, J. Atmos. Sci., 65, 87-105, doi:10.1175/2007JAS2263.1.
    • Randall, D., and D. M. Pan (1993), Implementation of the ArakawaSchubert cumulus parameterization with a prognostic closure, Meteorol. Monogr., 46, 137-144.
    • Randall, D., et al. (2003), Confronting models with data: The GEWEX cloud systems study, Bull. Amer. Meteor. Soc., 84, 455-469, doi:10.1175/BAMS-84-4-455.
    • Rasch, P. J., and J. E. Kristj√°nsson (1998), A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations, J. Climate, 11(7), 1587-1614, doi:10.1175/1520- 0442(1998)011<1587:ACOTCM>2.0.CO;2.
    • Rotstayn, L. D. (1979), A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes, Q. J. Roy. Meteor. Soc., 123, 1227-1282, doi:10.1002/qj.49712354106.
    • Schmidt, G. A., et al. (2006), Present day atmospheric simulations using GISS Model E: Comparison to in-situ, satellite and reanalysis data, J. Climate, 19, 153-192, doi:10.1175/JCLI3612.1.
    • Schwarzkopf, M. D., and S. B. Fels (1991), The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes, J. Geophys. Res., 96(D5), 9075-9096, doi:10.1029/89JD01598.
    • Schwarzkopf, M. D., and V. Ramaswamy (1999), Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment, J. Geophys. Res., 104(D8), 9467-9488, doi:10.1029/1999JD900003.
    • Slingo, A. (1989), A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46, 1419-1427, doi:10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2.
    • Smith, R. N. B. (1990), A scheme for predicting layer clouds and their water content in a general circulation model, Q. J. R. Meteorol. Soc., 116, 435-460, doi:10.1002/qj.49711649210.
    • Stephens, G. L., P. M. Gabriel, and P. T. Partain (2001), Parameterization of atmospheric radiative transfer. Part I: Validity of simple models, J. Atmos. Sci., 58, 3391-3409, doi:10.1175/1520- 0469(2001)058<3391:POARTP>2.0.CO;2.
    • Sundqvist, H., E. Berge, and J. E. Kristjansson (1989), Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model, Mon. Wea. Rev., 117, 1641-1657, doi:10.1175/1520- 0493(1989)117<1641:CACPSW>2.0.CO;2.
    • Tiedtke, M. (1983), The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model, in Workshop on Convection in Large-scale Numerical Models, vol. 28, Shinfield Park, Reading, pp. 297-316.
    • Tiedtke, M. (1993), Representation of clouds in large-scale models, Mon. Wea. Rev., 121(11), 3040-3061, doi:10.1175/1520-0493(1993) 121<3040:ROCILS>2.0.CO;2.
    • Wang, W., X. Liu, S. Xie, J. Boyle, and S. A. McFarlane (2009), Testing ice microphysics parameterizations in the NCAR community atmospheric model version 3 using tropical warm pool-International Cloud Experiment data, J. Geophys. Res., 114, D14107, doi:10.1029/ 2008JD011220.
    • Webster, P., and R. Lukas (1992), TOGA-COARE: The Coupled Ocean-Atmosphere Response Experiment, Bull. Amer. Meteor. Soc, 73, 1377-1416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR> 2.0.CO;2.
    • Wilson, D., and R. Forbes, (2004), Unified model documentation paper 26: The large-scale precipitation parametrization scheme, Technical Report 26, Met Office R&D.
    • Wilson, D. R., and S. P. Ballard (1999), A microphysically based precipitation scheme for the UK Meteorological Office Unified Model, Q. J. R. Meteorol. Soc., 125, 1607-1636, doi:10.1002/qj.49712555707.
    • Woolnough, S. J., P. Blossey, K. M. Xu, P. Bechtold, J. C. T. Hosomi, S. Iacobellis, Y. Luo, J. Petch, R. Wong, and S. Xie (2010), Modelling convective processes during the suppressed phase of a Madden-Julian oscillation: Comparing single-column models with cloud-resolving models, Q. J. R. Meteorol. Soc., 136(647), 333-353, doi:10.1002/ qj.568.
    • Xie, S., et al. (2002), Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions, Quart. J. Roy. Meteor. Soc., 128, 1095-1136, doi:10.1256/ 003590002320373229.
    • Xie, S., R. T. Cederwall, and M. Zhang (2004), Developing long-term single-column model/cloud system-resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations, J. Geophys. Res., 109, D01104, doi:10.1029/2003JD004045.
    • Xie, S., et al. (2005), Simulations of midlatitude frontal clouds by singlecolumn and cloud-resolving models during the Atmospheric Radiation Measurement March 2000 cloud intensive operational period, J. Geophys. Res., 110, D15S03, doi:10.1029/2004JD005119.
    • Xie, S., T. Hume, C. Jakob, S. A. Klein, R. B. McCoy, and M. Zhang (2010), Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE, J. Climate, 23, 57-79, doi:10.1175/2009JCLI3071.1.
    • Xie, S., and M. Zhang (2000), Impact of the convection triggering function on single-column model simulations, J. Geophys. Res., 105(D11), 14983-14996, doi:10.1029/2000JD900170.
    • Xu, K. M., et al. (2002), An intercomparison of cloud-resolving models with the atmospheric radiation measurement summer 1997 intensive observation period data, Quart. J. Roy. Meteor. Soc., 580, 593-624, doi:10.1256/003590002321042117.
    • Zhang, G., and N. A. McFarlane (1995), Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model, Atmos. Ocean, 33, 407-446, doi:10.1080/07055900.1995.9649539.
    • Zhang, G. J. (2002), Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization, J. Geophys. Res., 107(D14), 4220, doi:10.1029/2001JD001005.
    • Zhang, M., W. Lin, C. S. Bretherton, J. J. Hack, and P. J. Rasch (2003), A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2), J. Geophys. Res., 108(D1), 4035, doi:10.1029/2002JD002523.
    • Zhang, M. H., and J. L. Lin (1997), Constrained variational analysis of sounding data based on column integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements, J. Atmos. Sci., 54, 1503-1524, doi:10.1175/1520- 0469(1997)054<1503:CVAOSD>2.0.CO;2.
    • Zhang, M. H., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie (2001), Objective analysis of ARM IOP data: Method and sensitivity, Mon. Wea. Rev., 129, 295-311, doi:10.1175/1520-0493(2001)129<0295: OAOAID>2.0.CO;2.
    • Zhao, Q. Y., and F. H. Carr (1997), A prognostic cloud scheme for operational NWP models, Mon. Wea. Rev., 125, 1931-1953, doi:10.1175/1520- 0493(1997)125<1931:APCSFO>2.0.CO;2.
    • Zhu, P., J. Dudhia, P. Field, K. Wapler, A. Fridlind, A. Varble, E. Zipser, J. Petch, M. Chen, and Z. Zhu (2012), A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event, J. Geophys. Res., 117, D11208, doi:10.1029/ 2011JD016447.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: Clo...

Cite this article