Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Padgett, M.J. (2008)
Publisher: Optical Society of America
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Optics, Physics::Classical Physics
The Abraham-Minkowski dilemma relates to the disputed value of the optical momentum within a dielectric medium and whether the free-space value should be divided (Abraham) or multiplied (Minkowski) by the refractive index. Although undoubtedly simplistic, these two approaches provide intuitive insight to many subtle problems in optical physics. This paper reviews a modified version of the Einstein box argument that supports an Abraham formulation, then considers diffraction within a dielectric medium and shows it supports a simple Minkowski formulation, i.e. that the optical momentum should be multiplied by the refractive index.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133-201 (1979).
    • 2. D. Nelson, “Momentum, pseudomomentum, and wave momentum - toward resolving the Minkowski-Abraham controversy,” Phys. Rev. A 44, 3985-3996 (1991).
    • 3. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375-5401 (2004).
    • 4. U. Leonhardt, “Optics: Momentum in an uncertain light,” Nature 444, 823-824 (2006).
    • 5. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197-1216 (2007).
    • 6. M. Abraham, Rend. Circ. Matem. Palermo 28, 1 (1909).
    • 7. A. Einstein, “The principle of conservation of the centre of gravity movement and the inertia of energy,” Ann. Phys. 20, 627-633 (1906).
    • 8. S. Weinberg, “Gravitation and Cosmology: Principles and Applications of the General Theory ” p. 46 (1972).
    • 9. H. Minkowski, Nachr. Ges. Wiss. Go¨ttn Math.-Phys. Kl. 53, 472-525 (1908).
    • 10. I. Brevik, “Phenomenological photons and the uncertainty principle,” Eur. J. Phys. 2, 37-43 (1981).
    • 11. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666-2670 (2007)
    • 12. G. K. Campbell, A. E. Leanhardt, J. Mun, M. Boyd, E. W. Streed, W. Ketterle, and D. E. Pritchard, “Photon Recoil Momentum in Dispersive Media,” Phys. Rev. Lett. 94,170403 (2005).
    • 13. J. Guck, R. Ananthakrishnan, H. Mahmood, T. Moon, C. Cunningham, and J. Kas, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767-784 (2001).
    • 14. A. Gibson, M. Kimmitt, and A. Walker, “Photon drag in germanium,” Appl. Phys. Lett. 17, 75-77 (1970).
    • 15. R. Loudon, S. Barnett, and C. Baxter, “Radiation pressure and momentum transfer in dielectrics: The photon drag effect,” Phys. Rev. A 71, 063802 (2005).
    • 16. M. Kristensen and J. P. Woerdman, “Is photon angular momentum conserved in a dielectric medium?” Phys. Rev. Lett. 72, 2171-2174 (1994).
    • 17. R. Loudon, “Theory of the radiation pressure on dielectric surfaces,” J. Mod. Opt. 49, 821-838 (2002).
    • 18. R. Loudon and S. M. Barnett, “Theory of the radiation pressure on dielectric slabs, prisms and single surfaces,” Opt. Express 14, 11855-11869 (2006).
    • 19. M. Padgett, S. Barnett, and R. Loudon, “The angular momentum of light inside a dielectric,” J. Mod. Opt. 50, 1555-1562 (2003).
    • 20. R. Loudon, “Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics,” Phys. Rev. A 68, 013806 (2003).
    • 21. R. Jones and B. Leslie, “The Measurement of Optical Radiation Pressure in Dispersive Media,” Proc. Roy. Soc. London A 360, 347-363 (1978).
    • 22. W. She, J. Yu, and R. Feng, “Observation of a push force on the end face of a nm fiber taper exerted by outgoing light,” arXiv:0806.2442v1
    • 23. M. Mansuripur, “Radiation pressure on submerged mirrors: Implications for the momentum of light in dielectric media,” Opt. Express 15, 2677-2682 (2007).
    • 24. S. M. Barnett and R. Loudon, “On the electromagnetic force on a dielectric medium,” J. Phys. B 39, S671-S684 (2006).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article