LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gama, Carolina
Languages: English
Types: Doctoral thesis
Subjects: RC, TK
The splanchnic region (abdominal gastrointestinal organs) is sometimes known as the “canary of the body” for its susceptibility to develop hypoxia at an earlier stage, analogue to the old times practice in coal mining. When the neuroendocrine response is activated, it exhibits regulation of blood flow and extraction of oxygen, facilitating redistribution of blood to vital organs. This can ultimately lead to systemic inflammatory response and multiple organ failure. The vital need to monitor the perfusion of the splanchnic region in critically ill patients has not yet been met by existing techniques. The goal of this research was to evaluate the feasibility of using the technique of photoplethysmography intraluminally in the duodenum in order to measure the haemodynamic changes occurring in the splanchnic circulation in a minimally invasive fashion. A bespoke processing system and data acquisition virtual instrument were designed and developed to allow continuous and simultaneous monitoring of two probes: an existing miniaturised PPG probe intended for intraluminal use and optically- identical finger PPG probe. Nine anaesthetised patients undergoing elective open laparotomy surgery were recruited and consented for the clinical trial at The Royal London Hospital. Due to the great proximity to the surgical site, monitoring of duodenal pulse oximetry signals could not be done in a continuous way. Also, the presence of moderate respiratory modulation in otherwise good quality, high amplitude signals seemed to result in an underestimation of arterial blood saturation of 2%. A frequency domain algorithm was thus applied to the data with results in agreement with both the finger PPG probe and commercial pulse oximeter. Blood oxygen saturation estimation at respiratory frequency yielded values within the physiological range expected for venous blood. For three of the patients, PPG signals were also acquired from the stomach, with results showing a similar pattern to the ones obtained from the duodenum. During the clinical trials, two patients experienced hypotension. PPG signals obtained before, during and after showed a great decrease in estimated blood oxygen saturations, which remained low even when monitored haemodynamical variables were back to normal values. Finger PPG probe estimations and commercial pulse oximetry values did not demonstrate this change. This suggests the possibility of photoplethysmography identifying changes in tissue oxygenation and blood volume in the splanchnic circulation resulting from external and/or internal regulatory mechanisms. This clinical trial thus show the great promise of pulse oximetry as complementary monitoring for patients at risk of developing splanchnic ischaemia.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [2] D. A. Vagts and G. F. Nöldge-Schomburg, '[Hemodynamic monitoring of splanchnic circulation--does the benefit outweight risk of of regional circulation monitoring?]', Anaesthesiol. Reanim., vol. 26, no. 4, pp. 96-101, 2001.
    • [3] Träger, P. Radermacher, A. Brinkmann, E. Calzia, and P. Kiefer, 'Gastrointestinal tract resuscitation in critically ill patients.', Curr. Opin. Clin. Nutr. Metab. Care, vol. 6, no. 2, pp. 587-591, 2003.
    • D. R. Dantzker, 'The Gastrointestinal Tract', JAMA J. Am. Med. Assoc., vol. 270, no. 10, pp. 1247 -1248, 1993.
    • M. Hickey, N. Samuels, N. Randive, R. M. Langford, and P. A. Kyriacou, 'Investigation of photoplethysmographic signals and blood oxygen saturation values obtained from human splanchnic organs using a fiber optic sensor', J. Clin. Monit. Comput., vol. 25, no. 4, pp. 245-255, Sep. 2011.
    • [6] J. J. Kolkman, M. Bargeman, A. B. Huisman, and R. H. Geelkerken, 'Diagnosis and management of splanchnic ischemia', World J. Gastroenterol. WJG, vol. 14, no. 48, pp. 7309-7320, Dec. 2008.
    • D. L. Bowton, P. E. Scuderi, L. Harris, and E. F. Haponik, 'Pulse oximetry monitoring outside the intensive care unit: progress or problem?', Ann. Intern. Med., vol. 115, no. 6, pp. 450-454, Sep. 1991.
    • [9] J. G. Webster, Encyclopedia of Medical Devices and Instrumentation: Nanoparticles - Radiotherapy accessories. Wiley-Interscience, 2006.
    • [10] J. P. Phillips, A. Belhaj, K. Shafqat, R. M. Langford, K. H. Shelley, and P. A. Kyriacou, 'Modulation of finger photoplethysmographic traces during forced respiration: Venous blood in motion?', in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2012, pp. 3644 -3647.
    • [11] Z. D. Walton, P. A. Kyriacou, D. G. Silverman, and K. H. Shelley, 'Measuring venous oxygenation using the photoplethysmograph waveform', J. Clin. Monit. Comput., vol. 24, no. 4, pp. 295-303, Aug. 2010.
    • [12] T. Duke, 'Dysoxia and lactate', Arch. Dis. Child., vol. 81, no. 4, pp. 343-350, Oct. 1999.
    • [13] G. J. Tortora and B. Derrickson, Principles of Anatomy and Physiology. John Wiley and Sons, 2008.
    • [14] J. Enderle and J. Bronzino, Introduction to Biomedical Engineering. Academic Press, 2011.
    • [15] T. J. Johnson, Critical Care Pharmacotherapeutics. Jones & Bartlett Publishers, 2012.
    • [16] N. Soni and P. Williams, 'Positive pressure ventilation: what is the real cost?', Br. J. Anaesth., vol. 101, no. 4, pp. 446-457, Oct. 2008.
    • [17] A. B. Lumb and J. F. Nunn, Nunn's applied respiratory physiology, 5th ed. Elsevier/Butterworth Heinemann, 2000.
    • [18] D. Damianou, 'The wavelength dependence of plethysmography and its implications to pulse oximetry', PhD Dissertation, University of Nottingham, 1995.
    • [19] 'Anaesthesia UK : The central venous pressure.' [Online]. Available: http://www.frca.co.uk/article.aspx?articleid=100035. [Accessed: 03-Apr-2013].
    • [20] R. N. Pittman, 'Oxygen Transport', 2011. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK54103/. [Accessed: 03-Apr-2013].
    • [21] J. G. Webster, Design of pulse oximeters. CRC Press, 1997.
    • [22] R. Law and H. Bukwirwa, 'The physiology of oxygen delivery', Update Anaesth., vol. 10, no. 1-2, p. 39, 1999.
    • [23] R. M. Leach and D. F. Treacher, 'Oxygen transport--2. Tissue hypoxia', BMJ, vol. 317, no. 7169, pp. 1370-1373, Nov. 1998.
    • [24] 'Cellular pathophysiology. Part 2: responses following hypoxia.' [Online]. Available: http://www.nursingtimes.net/cellular-pathophysiology-part-2-responsesfollowing-hypoxia/200091.article. [Accessed: 03-Apr-2013].
    • [25] 'The Four Hypoxias.' [Online]. Available: http://ertrauma101.blogspot.co.uk/2011/04/four-hypoxias.html. [Accessed: 03-Apr-2013].
    • [26] D. D. Heistad and F. M. Abboud, 'Dickinson W. Richards Lecture: Circulatory adjustments to hypoxia', Circulation, vol. 61, no. 3, pp. 463-470, Mar. 1980.
    • [27] 'Cellular pathophysiology. Part 1: changes following tissue injury.' [Online]. Available: http://www.nursingtimes.net/cellular-pathophysiology-part-1-changesfollowing-tissue-injury/200093.article. [Accessed: 03-Apr-2013].
    • [28] C. Ince, 'The microcirculation is the motor of sepsis', Crit. Care, vol. 9, no. Suppl 4, pp. S13-S19, 2005.
    • [29] H. L. Bockus and J. E. Berk, Bockus gastroenterology, 2nd ed. WB Saunders, 1993.
    • [30] H. Gray, P. L. Williams, and L. H. Bannister, Gray's anatomy: the anatomical basis of medicine and surgery. Churchill Livingstone, 1995.
    • [31] 'Duodenum', In The Hutchinson unabridged encyclopedia with atlas and weather guide. Helicon, Abington, United Kingdom, 2014.
    • [32] M. V. Jayaraman, W. W. Mayo-Smith, J. S. Movson, D. E. Dupuy, and M. T. Wallach, 'CT of the duodenum: an overlooked segment gets its due', Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc, vol. 21 Spec No, pp. S147-160, Oct. 2001.
    • [33] R. S. Snell, Clinical Anatomy by Regions. Lippincott Williams & Wilkins, 2011.
    • [34] K. L. Moore, A. F. Dalley, and A. M. R. Agur, Clinically Oriented Anatomy. Lippincott Williams & Wilkins, 2013.
    • [35] M. Feldman, L. S. Friedman, and L. J. Brandt, Sleisenger and Fordtran's Gastrointestinal and Liver Disease: Pathophysiology, Diagnosis, Management, Expert Consult Premium Edition - Enhanced Online Features. Elsevier Health Sciences, 2010.
    • [36] T. Yamada, Textbook of gastroenterology. Blackwell Pub., 2009.
    • [37] F. H. Netter, The Netter Collection of Medical Illustrations: Digestive System: Upper Digestive Tract, 2nd ed., vol. Volume 3 Part 1. Novartis Publication, 1997.
    • [38] S. G. Schultz and J. D. Wood, Eds., Handbook of Physiology: Section 6: The Gastrointestinal System Volume I: Motility and Circulation, Parts 1 & 2. Oxford University Press, USA, 1989.
    • [39] A. Marston, Splanchnic Ischemia and Multiple Organ Failure. C.V. Mosby, 1989.
    • [40] S. M. Hollenberg, 'Inotrope and Vasopressor Therapy of Septic Shock', Crit. Care Clin., vol. 25, no. 4, pp. 781-802, Oct. 2009.
    • [41] D. A. Parks and E. D. Jacobson, 'Physiology of the Splanchnic Circulation', Arch Intern Med, vol. 145, no. 7, pp. 1278-1281, Jul. 1985.
    • [42] V. Starc, 'Effects of Myogenic and Metabolic Mechanisms on the Autoregulation of Blood Flow Through Muscle Tissue: A Mathematical Model Study', Cardiovasc. Eng. Int. J., vol. 4, no. 1, pp. 81-88, Mar. 2004.
    • [43] J. Takala, 'Determinants of splanchnic blood flow', Br. J. Anaesth., vol. 77, no. 1, pp. 50-58, Jul. 1996.
    • [44] L. Holm-Rutili, M. A. Perry, and D. N. Granger, 'Autoregulation of gastric blood flow and oxygen uptake', Am. J. Physiol., vol. 241, no. 2, pp. G143-149, Aug. 1981.
    • [45] L. Oud and M. T. Haupt, 'Persistent gastric intramucosal ischemia in patients with sepsis following resuscitation from shock', Chest, vol. 115, no. 5, pp. 1390-1396, May 1999.
    • [46] J. Hall, G. Schmidt, and L. Wood, Principles of Critical Care, Third Edition. McGraw Hill Professional, 2005.
    • [47] G. Garrabou, C. Morén, S. López, E. Tobías, F. Cardellach, O. Miró, and J. Casademont, 'The effects of sepsis on mitochondria', J. Infect. Dis., vol. 205, no. 3, pp. 392-400, Feb. 2012.
    • [48] A. C. Guyton and J. E. Hall, Human physiology and mechanisms of disease. Saunders, 1997.
    • [49] I. Greaves, K. M. Porter, and J. M. Ryan, Trauma Care Manual. Hodder Arnold, 2001.
    • [50] J. P. Desborough, 'The stress response to trauma and surgery', Br. J. Anaesth., vol. 85, no. 1, pp. 109-117, Jul. 2000.
    • [51] M. Nakatsuka, 'Assessment of Gut Mucosal Perfusion and Colonic Tissue Blood Flow During Abdominal Aortic Surgery with Gastric Tonometry and Laser Doppler Flowmetry', Vasc. Endovascular Surg., vol. 36, no. 3, pp. 193 -198, May.
    • [52] S. O. Heard, 'Gastric Tonometry*', Chest, vol. 123, no. 5 suppl, p. 469S -474S, May 2003.
    • [53] F. M. P. van Haren, J. W. Sleigh, P. Pickkers, and J. G. Van der Hoeven, 'Gastrointestinal perfusion in septic shock', Anaesth. Intensive Care, vol. 35, no. 5, pp. 679-694, Oct. 2007.
    • [54] A. Karliczek, D. A. Benaron, P. C. Baas, C. J. Zeebregts, A. van der Stoel, T. Wiggers, J. T. M. Plukker, and G. M. van Dam, 'Intraoperative assessment of microperfusion with visible light spectroscopy in esophageal and colorectal anastomoses', Eur. Surg. Res. Eur. Chir. Forsch. Rech. Chir. Eur., vol. 41, no. 3, pp. 303-311, 2008.
    • [55] A. Carreau, B. El Hafny-Rahbi, A. Matejuk, C. Grillon, and C. Kieda, 'Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia', J. Cell. Mol. Med., vol. 15, no. 6, pp. 1239-1253, Jun. 2011.
    • [56] T. Koch, S. Geiger, and M. J. R. Ragaller, 'Monitoring of Organ Dysfunction in Sepsis/Systemic Inflammatory Response Syndrome: Novel Strategies', J. Am. Soc. Nephrol., vol. 12, no. suppl 1, pp. S53-S59, Feb. 2001.
    • [57] J. Ragheb and D. J. Buggy, 'Editorial III: Tissue oxygen tension (PTO2) in anaesthesia and perioperative medicine', Br. J. Anaesth., vol. 92, no. 4, pp. 464 -468, Apr. 2004.
    • [58] P. J. Sheffield, 'Measuring tissue oxygen tension: a review', Undersea Hyperb. Med. J. Undersea Hyperb. Med. Soc. Inc, vol. 25, no. 3, pp. 179-188, 1998.
    • [59] H. B. Kram and W. C. Shoemaker, 'Method for intraoperative assessment of organ perfusion and viability using a miniature oxygen sensor', Am. J. Surg., vol. 148, no. 3, pp. 404-407, Sep. 1984.
    • [60] G. J. Cooper, K. M. Sherry, and J. A. Thorpe, 'Changes in gastric tissue oxygenation during mobilisation for oesophageal replacement', Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg., vol. 9, no. 3, pp. 158-160; discussion 160, 1995.
    • [61] C. A. Jacobi, H. U. Zieren, J. Zieren, and J. M. Müller, 'Is tissue oxygen tension during esophagectomy a predictor of esophagogastric anastomotic healing?', J. Surg. Res., vol. 74, no. 2, pp. 161-164, Feb. 1998.
    • [62] R. G. Fiddian-Green, 'Gastric intramucosal pH, tissue oxygenation and acid-base balance', Br. J. Anaesth., vol. 74, no. 5, pp. 591-606, May 1995.
    • [63] A. P. Marshall and S. H. West, 'Gastric tonometry and monitoring gastrointestinal perfusion: using research to support nursing practice', Nurs. Crit. Care, vol. 9, no. 3, pp. 123-133, Jun. 2004.
    • [64] G. Ackland, M. P. Grocott, and M. G. Mythen, 'Understanding gastrointestinal perfusion in critical care: so near, and yet so far', Crit. Care Lond. Engl., vol. 4, no. 5, pp. 269-281, 2000.
    • [65] F. Palizas, A. Dubin, T. Regueira, A. Bruhn, E. Knobel, S. Lazzeri, N. Baredes, and G. Hernández, 'Gastric tonometry versus cardiac index as resuscitation goals in septic shock: a multicenter, randomized, controlled trial', Crit. Care, vol. 13, no. 2, p. R44, Mar. 2009.
    • [66] A. B. J. Groeneveld and J. J. Kolkman, 'Splanchnic tonometry: a review of physiology, methodology, and clinical applications', J. Crit. Care, vol. 9, no. 3, pp. 198-210, Sep. 1994.
    • [67] J. A. Guzman, F. J. Lacoma, and J. A. Kruse, 'Gastric and esophageal intramucosal PCO2 (PiCO2) during endotoxemia: assessment of raw PiCO2 and PCO2 gradients as indicators of hypoperfusion in a canine model of septic shock', Chest, vol. 113, no. 4, pp. 1078-1083, Apr. 1998.
    • [68] P. Marik, 'Gastric tonometry: the canary sings once again', Crit. Care Med., vol. 26, no. 5, pp. 809-810, May 1998.
    • [69] N. Maynard, D. Bihari, R. Beale, M. Smithies, G. Baldock, R. Mason, and I. McColl, 'Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure', JAMA J. Am. Med. Assoc., vol. 270, no. 10, pp. 1203-1210, Sep. 1993.
    • [70] N. H. Boyle, A. Pearce, D. Hunter, W. J. Owen, and R. C. Mason, 'Scanning laser Doppler flowmetry and intraluminal recirculating gas tonometry in the assessment of gastric and jejunal perfusion during oesophageal resection', Br. J. Surg., vol. 85, no. 10, pp. 1407-1411, Oct. 1998.
    • [71] U. Janssens, H. Groesdonk, J. Graf, P. W. Radke, W. Lepper, and P. Hanrath, 'Comparison of oesophageal and gastric air tonometry in patients with circulatory failure', Br. J. Anaesth., vol. 89, no. 2, pp. 237-241, Aug. 2002.
    • [72] Y. Sato, M. H. Weil, W. Tang, S. Sun, J. Xie, J. Bisera, and H. Hosaka, 'Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock', J. Appl. Physiol. Bethesda Md 1985, vol. 82, no. 2, pp. 558-562, Feb. 1997.
    • [73] V. Cerny and K. Cvachovek, 'Gastric Tonometry and Intramucosal pH - Theoretical Principles and Clinical Application', Physiol Res, no. 49, pp. 289-297, 2000.
    • [74] K. R. Walley, B. P. Friesen, M. F. Humer, and P. T. Phang, 'Small bowel tonometry is more accurate than gastric tonometry in detecting gut ischemia', J. Appl. Physiol., vol. 85, no. 5, pp. 1770-1777, Nov. 1998.
    • [75] E. Monnet, D. Pelsue, and C. MacPhail, 'Evaluation of laser Doppler flowmetry for measurement of capillary blood flow in the stomach wall of dogs during gastric dilatation-volvulus', Vet. Surg. VS, vol. 35, no. 2, pp. 198-205, Feb. 2006.
    • [76] A. Humeau, W. Steenbergen, H. Nilsson, and T. Strömberg, 'Laser Doppler perfusion monitoring and imaging: novel approaches', Med. Biol. Eng. Comput., vol. 45, no. 5, pp. 421-435, Mar. 2007.
    • [77] R. K. Mittal, V. Bhargava, H. Lal, and Y. Jiang, 'Effect of esophageal contraction on esophageal wall blood perfusion', Am. J. Physiol. Gastrointest. Liver Physiol., vol. 301, no. 6, pp. G1093-1098, Dec. 2011.
    • [78] Y. Jiang, V. Bhargava, Y. S. Kim, and R. K. Mittal, 'Esophageal wall blood perfusion during contraction and transient lower esophageal sphincter relaxation in humans', Am. J. Physiol. Gastrointest. Liver Physiol., vol. 303, no. 5, pp. G529-535, Sep. 2012.
    • [79] D. A. L. Hoff, H. Gregersen, and J. G. Hatlebakk, 'Mucosal blood flow measurements using laser Doppler perfusion monitoring', World J. Gastroenterol. WJG, vol. 15, no. 2, pp. 198-203, Jan. 2009.
    • [80] G. H. Sigurdsson, A. Banic, and J. T. Christenson, 'Microcirculation in the Gastrointestinal Tract', Dig. Surg., vol. 13, no. 4-5, pp. 250-254, 1996.
    • [81] J. C. Sicsic, J. Duranteau, H. Corbineau, S. Antoun, P. Menestret, P. Sitbon, A. Leguerrier, Y. Logeais, and C. Ecoffey, 'Gastric mucosal oxygen delivery decreases during cardiopulmonary bypass despite constant systemic oxygen delivery', Anesth. Analg., vol. 86, no. 3, pp. 455-460, Mar. 1998.
    • [82] K. Kvernebo, O. C. Lunde, E. Stranden, and S. Larsen, 'Human gastric blood circulation evaluated by endoscopic laser Doppler flowmetry', Scand. J. Gastroenterol., vol. 21, no. 6, pp. 685-692, Aug. 1986.
    • [83] F. W. Leung, 'Comparison of Blood Flow Measurements by Hydrogen Gas Clearance and Laser Doppler Flowmetry in the Rat Duodenum', Scand. J. Gastroenterol., vol. 25, no. 5, pp. 429-434, Jan. 1990.
    • [84] J. T. B. Moyle, Pulse oximetry. BMJ, 2002.
    • [85] P. A. Kyriacou, 'Pulse oximetry in the oesophagus', Physiol. Meas., vol. 27, no. 1, pp. R1-R35, Jan. 2006.
    • [86] E. Garcia-Granero, S. A. Garcia, R. Alos, J. Calvete, B. Flor-Lorente, J. Willatt, and S. Lledo, 'Use of photoplethysmography to determine gastrointestinal perfusion pressure: an experimental canine model', Dig. Surg., vol. 20, no. 3, pp. 222-228, 2003.
    • [87] E. L. Servais, N. P. Rizk, L. Oliveira, V. W. Rusch, M. Bikson, and P. S. Adusumilli, 'Real-time intraoperative detection of tissue hypoxia in gastrointestinal surgery by wireless pulse oximetry', Surg. Endosc., vol. 25, no. 5, pp. 1383-1389, May 2011.
    • [88] M. Jacquet-Lagrèze, J.-M. Bonnet-Garin, B. Allaouchiche, O. Vassal, D. Restagno, C. Paquet, J.-Y. Ayoub, J. Etienne, F. Vandenesch, O. Daulwader, and S. Junot, 'A new device for continuous assessment of gut perfusion: proof of concept on a porcine model of septic shock', Crit. Care Lond. Engl., vol. 18, no. 4, p. R153, 2014.
    • [89] S. M. Lopez Silva, M. L. Dotor Castilla, and J. P. Silveira Martin, 'Near-infrared transmittance pulse oximetry with laser diodes', J. Biomed. Opt., vol. 8, no. 3, pp. 525-533, Jul. 2003.
    • [90] S. M. López-Silva, J. P. Silveira, M. L. Dotor, R. Giannetti, D. Golmayo, and L. Herrera, 'Transmittance photoplethysmography with near-infrared laser diodes in intraperitoneal organs', Physiol. Meas., vol. 27, no. 10, p. 1033, 2006.
    • [91] D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. A. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. L. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W.-F. Cheong, J. L. Duckworth, and D. K. Stevenson, 'Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy', Anesthesiology, vol. 100, no. 6, pp. 1469- 1475, Jun. 2004.
    • [92] S. Friedland, D. Benaron, S. Coogan, D. Y. Sze, and R. Soetikno, 'Diagnosis of chronic mesenteric ischemia by visible light spectroscopy during endoscopy', Gastrointest. Endosc., vol. 65, no. 2, pp. 294-300, Feb. 2007.
    • [93] T. Aoyagi, 'Pulse oximetry: its invention, theory, and future', J. Anesth., vol. 17, no. 4, pp. 259-266, 2003.
    • [94] J. W. Severinghaus and P. B. Astrup, 'History of blood gas analysis. VI. Oximetry', J. Clin. Monit., vol. 2, no. 4, pp. 270-288, Oct. 1986.
    • [95] J. T. B. Moyle, Pulse oximetry. BMJ, 2002.
    • [96] L. Sh. Sangeeta Bagha, 'A Real Time Analysis of PPG Signal for Measurement of SpO2 and Pulse Rate', Int. JournalOf Comput. Appl., 2011.
    • [97] J. Allen, 'Photoplethysmography and its application in clinical physiological measurement', Physiol. Meas., vol. 28, no. 3, pp. R1-R39, Feb. 2007.
    • [98] A. Reisner, P. A. Shaltis, D. McCombie, and H. H. Asada, 'Utility of the photoplethysmogram in circulatory monitoring', Anesthesiology, vol. 108, no. 5, pp. 950-958, May 2008.
    • [99] M. Elgendi, 'On the Analysis of Fingertip Photoplethysmogram Signals', Curr. Cardiol. Rev., vol. 8, no. 1, pp. 14-25, Feb. 2012.
    • [100] S. P. McGrath, K. L. Ryan, S. M. Wendelken, C. A. Rickards, and V. A. Convertino, 'Pulse oximeter plethysmographic waveform changes in awake, spontaneously breathing, hypovolemic volunteers', Anesth. Analg., vol. 112, no. 2, pp. 368-374, Feb. 2011.
    • [101] S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, 'Contour analysis of the photoplethysmographic pulse measured at the finger', J. Hypertens., vol. 24, no. 8, pp. 1449-1456, Aug. 2006.
    • [102] L. B. Cook, 'Extracting arterial flow waveforms from pulse oximeter waveforms apparatus', Anaesthesia, vol. 56, no. 6, pp. 551-555, Jun. 2001.
    • [103] P. D. Mannheimer, 'The light-tissue interaction of pulse oximetry', Anesth. Analg., vol. 105, no. 6 Suppl, pp. S10-17, Dec. 2007.
    • [104] D. J. Meredith, D. Clifton, P. Charlton, J. Brooks, C. W. Pugh, and L. Tarassenko, 'Photoplethysmographic derivation of respiratory rate: a review of relevant physiology', J. Med. Eng. Technol., vol. 36, no. 1, pp. 1-7, Jan. 2012.
    • [105] K. H. Shelley, 'Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate', Anesth. Analg., vol. 105, no. 6 Suppl, pp. S31-36, tables of contents, Dec. 2007.
    • [106] V. C. Roberts, 'Photoplethysmography- fundamental aspects of the optical properties of blood in motion', Trans. Inst. Meas. Control, vol. 4, no. 2, pp. 101- 106, Apr. 1982.
    • [107] J. Allen, 'Photoplethysmography and its application in clinical physiological measurement', Physiol. Meas., vol. 28, no. 3, pp. R1-R39, Mar. 2007.
    • [108] J. Näslund, J. Pettersson, T. Lundeberg, D. Linnarsson, and L.-G. Lindberg, 'Noninvasive continuous estimation of blood flow changes in human patellar bone', Med. Biol. Eng. Comput., vol. 44, no. 6, pp. 501-509, Jun. 2006.
    • [109] A. Sourice, G. Plantier, and J.-L. Saumet, 'Red blood cell velocity estimation in microvessels using the spatiotemporal autocorrelation', Meas. Sci. Technol., vol. 16, no. 11, pp. 2229-2239, Nov. 2005.
    • [110] J. W. Dellimore and R. G. Gosling, 'Change in blood conductivity with flow rate', Med. Biol. Eng., vol. 13, no. 6, pp. 904-913, Nov. 1975.
    • [111] S. Rao and V. Nagendranath, 'Arterial blood gas monitoring', Indian J Anaesth, vol. 46, no. 4, pp. 289-297, 2002.
    • [112] T. Vo-Dinh, Biomedical Photonics Handbook. CRC Press, 2003.
    • [123] K. V, 'Pulse Oximetry.', Indian J. Anaesth., vol. 46, no. 4, p. 261, Jul. 2002.
    • [124] M. B. Taylor and J. G. Whitwam, 'The current status of pulse oximetry', Anaesthesia, vol. 41, no. 9, pp. 943-949, Sep. 1986.
    • [125] P. A. Kyriacou, S. L. Powell, D. P. Jones, and R. M. Langford, 'Evaluation of oesophageal pulse oximetry in patients undergoing cardiothoracic surgery', Anaesthesia, vol. 58, no. 5, pp. 422-427, May 2003.
    • [126] M. Nitzan, A. Patron, Z. Glik, and A. T. Weiss, 'Automatic noninvasive measurement of systolic blood pressure using photoplethysmography', Biomed. Eng. OnLine, vol. 8, no. 1, p. 28, Oct. 2009.
    • [127] A. S. Echiadis, V. P. Crabtree, J. Bence, L. Hadjinikolaou, C. Alexiou, T. J. Spyt, and S. Hu, 'Non-invasive measurement of peripheral venous oxygen saturation using a new venous oximetry method: evaluation during bypass in heart surgery', Physiol. Meas., vol. 28, no. 8, pp. 897-911, Aug. 2007.
    • [128] J. C. Whitaker, The electronics handbook. CRC Press, 2005.
    • [129] P. K. Dash, 'Electrocardiogram Monitoring', Indian J. Anaesth., vol. 46, no. 4, pp. 251-260, 2002.
    • [130] P. A. Kyriacou, S. Powell, R. M. Langford, and D. P. Jones, 'Investigation of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients', Physiol. Meas., vol. 23, no. 3, pp. 533-545, Aug. 2002.
    • [131] P. A. Kyriacou, A. R. Moye, D. M. Choi, R. M. Langford, and D. P. Jones, 'Investigation of the human oesophagus as a new monitoring site for blood oxygen saturation', Physiol. Meas., vol. 22, no. 1, pp. 223-232, Feb. 2001.
    • [132] L. Veltchev, 'Technique for inflow blood control in liver surgery - /Review article/', J. IMAB - Annu. Proceeding Sci. Pap., vol. 15, book 1, no. 2009, pp. 72-74, Mar. 2010.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article