LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yang, W.-G.; Morley, N.A.; Mark Rainforth, W. (2015)
Publisher: American Institute of Physics (AIP)
Languages: English
Types: Article
Subjects:
Bilayered magnetic films (Co50Fe50 (CoFe)/Metglas) were RF sputtered on both (001)-oriented and (011)-oriented PMN-PT (lead magnesium niobate-lead titanate) substrates. Electric field-controlled magnetization changes were observed in all these samples: 65 nm CoFe/24 nm Metglas/(001) PMN-PT, 65 nm CoFe/24 nm Metglas/(011) PMN-PT, and 30 nm CoFe/12 nm Metglas/(011) PMN-PT. The maximum magnetic remanence ratio change (ΔMr/Ms) was 46% for CoFe/Metglas/(001) PMN-PT. In this heterostructure, the electric-field created two new non-volatile switchable remanence states and the as-grown remanence state was altered permanently. High-resolution transmission electron microscopy images show a sharp and smooth interface between Metglas and substrate and conversely a rougher interface was observed between Metglas and CoFe films. In the 30 nm CoFe/12 nm Metglas/(011) PMN-PT sample, a large ΔMr/Ms of 80% along the [100] direction was measured, while the ΔMr/Ms along the [01-1] direction was 60% at the applied electric field of 5 kV/cm, corresponding to a giant magnetoelectric coupling constant α = μoΔMr/E = 2.9 × 10-6 s/m.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1C. Israel, N. D. Mathur, and J. F. Scott, Nature Mater. 7, 93 (2008).
    • 2C. Chappert, A. Fert, and F. N. Van Dau, Nature Mater. 6, 813 (2007).
    • 3D. Barrionuevo, N. Ortega, A. Kumar, R. Chatterjee, J. F. Scott, and R. S.
    • Katiyar, J. Appl. Phys. 114, 234103 (2013).
    • 4M. Bibes and A. Barthelemy, Nature Mater. 7, 425 (2008).
    • 5J. H. Park, Y. K. Jeong, S. Ryu, J. Y. Son, and H. M. Jang, Appl. Phys.
    • Lett. 96, 192504 (2010).
    • 6M. Liu, O. Obi, J. Lou, Y. J. Chen, Z. H. Cai, S. Stoute, M. Espanol, M.
    • Mater. 19, 1826 (2009).
    • 7Y. Zhang, Z. G. Wang, Y. J. Wang, C. T. Luo, J. F. Li, and D. Viehland, J. Appl. Phys. 115, 084101 (2014).
    • 8M. Liu, Z. Y. Zhou, T. X. Nan, B. M. Howe, G. J. Brown, and N. X. Sun, Adv. Mater. 25, 1435 (2013).
    • 9J. Wang, J. Hu, H. Wang, H. Jiang, Z. Wu, J. Ma, X. Wang, Y. Lin, and C.
    • W. Nan, J. Appl. Phys. 107, 083901 (2010).
    • 10J. J. Yang, Y. G. Zhao, H. F. Tian, L. B. Luo, H. Y. Zhang, Y. J. He, and H. S. Luo, Appl. Phys. Lett. 94, 212504 (2009).
    • 11Y. Chen, J. Gao, T. Fitchorov, Z. Cai, K. S. Ziemer, C. Vittoria, and V. G.
    • Harris, Appl. Phys. Lett. 94, 082504 (2009).
    • 12J. W. Lee, S. C. Shin, and S. K. Kim, Appl. Phys. Lett. 82, 2458 (2003).
    • 13M. Liu, O. Obi, Z. Cai, J. Lou, G. Yang, K. S. Ziemer, and N. X. Sun, J. Appl. Phys. 107, 073916 (2010).
    • 14W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
    • 15N. Ortega, A. Kumar, R. S. Katiyar, and J. F. Scott, Appl. Phys. Lett. 91, 102902 (2007).
    • 16W. Eerenstein, F. D. Morrison, J. Dho, M. G. Blamire, J. F. Scott, and N. D. Mathur, Science 307, 1203a (2005).
    • 17N. Ortega, A. Kumar, J. F. Scott, D. B. Chrisey, M. Tomazawa, S. Kumari, D. G. B. Diestra, and R. S. Katiyar, J. Phys.: Condens. Matter 24, 445901 (2012).
    • 18M. Liu, S. D. Li, O. Obi, J. Lou, S. Rand, and N. X. Sun, Appl. Phys. Lett. 98, 222509 (2011).
    • 19A. Brandlmaier, S. Gepr€ags, G. Woltersdorf, R. Gross, and S. T. B. Goennenwein, J. Appl. Phys. 110, 043913 (2011).
    • 20Z. Li, J. Wang, Y. Lin, and C. W. Nan, Appl. Phys. Lett. 96, 162505 (2010).
    • 21T. Wu, A. Bur, P. Zhao, K. P. Mohanchandra, K. Wong, K. L. Wang, C. S. Lynch, and G. P. Carman, Appl. Phys. Lett. 98, 012504 (2011).
    • 22S. W. Yang, R. C. Peng, T. Jiang, Y. K. Liu, L. Feng, J. J. Wang, L. Q. Chen, X. G. Li, and C. W. Nan, Adv. Mater. 26, 7091 (2014).
    • 23Y. Chen, T. Fitchorov, Z. Cai, K. S. Ziemer, C. Vittoria, and V. G. Harris, J. Phys. D: Appl. Phys. 43, 155001 (2010).
    • 24V. A. Vas'ko, J. O. Rantschler, and M. T. Kief, IEEE Trans. Magn. 40, 2335 (2004).
    • 25S. Das, A. Herklotz, E. Pippel, E. J. Guo, D. Rata, and K. Do€rr, Phys. Rev. B 91, 134405 (2015).
    • 26P. Han, W. Yan, J. Tian, X. Huang, and H. Pan, Appl. Phys. Lett. 86, 052902 (2005).
    • 27A. Javed, N. A. Morley, and M. R. J. Gibbs, J. Magn. Magn. Mater. 321, 2877 (2009).
    • 28S. Kotapati, A. Javed, N. Reeves-Mclaren, M. R. J. Gibbs, and N. A. Morley, J. Magn. Magn. Mater. 331, 67 (2013).
    • 29J. H. Kim, K. S. Ryu, J. W. Jeong, and S. C. Shin, Appl. Phys. Lett. 97, 252508 (2010).
    • 30W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, and N. D. Mathur, Nature Mater. 6, 348 (2007).
    • 31Y. Chen, T. Fitchorov, C. Vittoria, and V. G. Harris, Appl. Phys. Lett. 97, 052502 (2010).
    • 32C. Thiele, K. Do€rr, O. Bilani, J. Ro€del, and L. Schultz, Phys. Rev. B 75, 054408 (2007).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article