LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bell, Anthony M. T.; Henderson, C. Michael B.; Wendlandt, Richard F.; Harrison, Wendy J. (2008)
Publisher: International Union of Crystallography
Journal: Acta Crystallographica Section E: Structure Reports Online
Languages: English
Types: Article
Subjects: Chemistry, QD1-999, Inorganic Papers
The apatite-type compound Ba5(AsO4)3Cl, pentabarium\ud tris[arsenate(V)] chloride, has been synthesized by ion\ud exchange at high temperature from a synthetic sample of\ud mimetite (Pb5(AsO4)3Cl) with BaCO3 as a by-product. The\ud results of the Rietveld refinement, based on high resolution\ud synchrotron X-ray powder diffraction data, show that the title\ud compound crystallizes in the same structure as other\ud halogenoapatites with general formula A5(YO4)3X (A =\ud divalent cation, Y = pentavalent cation, X = Cl, Br) in space\ud group P63/m. The structure consists of isolated tetrahedral\ud AsO4 3- anions (m symmetry), separated by two crystallographically\ud independent Ba2+ cations that are located on\ud mirror planes and threefold rotation axes, respectively. The\ud Cl- anions are at the 2b sites (3 symmetry) and are located in\ud the channels of the structure.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baker, W. E. (1966). Am. Mineral. 51, 1712-1721.
    • Chengjun, D., Xueyan, W., Wei, L., Haohong, C., Xinxin, Y. & Jingthai, Z. (2005). J. Alloys Compd, 396, 86-91.
    • Coelho, A. (2000). TOPAS. http://members.optusnet.com.au/ alancoelho/.
    • Dai, Y.-S., Hughes, J. M. & Moore, P. B. (1991). Can. Mineral. 29, 369-376.
    • Ðordevic´, T., Sˇ utovic´, S., Stojanovic´, J. & Karanovic´, Lj. (2008). Acta Cryst. C64, i82-i86.
    • Dunn, P. J. & Rouse, R. C. (1978). Can. Mineral. 16, 601-604.
    • Essington, M. E. (1988). Soil Sci. Soc. Am. J., 52, 1566-1570.
    • Fletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). Chem. Inf. Comput. Sci. 36, 746-749.
    • Harrison, W. J., Wendlandt, R. F. & Wendlandt, A. E. (2002). International Mineralogical Association 18th General Meeting, Sept 1-6, 2002, Edinburgh, Scotland. Abstract A18-10, meeting program with abstracts, p. 185.
    • Hata, M., Marumo, F., Iwai, S. & Aoki, H. (1979). Acta Cryst. B35, 2382-2384.
    • Kang, S. J. & Ozawa, T. C. (2003). Balls and Sticks. http://www.softbug.com/ toycrate/bs/index.html.
    • Kreidler, E. R. & Hummel, F. A. (1970). Am. Mineral. 55, 170-184.
    • Laugier, J. & Bochu, B. (2003). CELREF. http://www.CCP14.ac.uk/tutorial/ lmgp/CELREF.htm.
    • Mercier, P. H. J., Le Page, Y., Whitfield, P. S., Mitchell, L. D., Davidson, I. J. & White, T. J. (2005). Acta Cryst. B61, 635-655.
    • Reinen, D., Lachwa, H. & Allmann, R. (1986). Z. Anorg. Allg. Chem. 542, 71- 88.
    • Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
    • Roh, Y.-H. & Hong, S.-T. (2005). Acta Cryst. E61, i140-i142.
    • Schiff-Francois, A., Savelsberg, G. & Schaefer, H. (1979). Z. Naturforsch. Teil B, 34, 764-765.
    • Villiers, J. P. R. de (1971). Am. Mineral. 56, 758-766.
    • Westrip, S. P. (2008). publCIF. In preparation.
    • White, T. J. & ZhiLi, D. (2003). Acta Cryst. B59, 1-16.
    • Wu, P., Zeng, Y. Z. & Wang, C. M. (2003). Biomaterials, 25, 1123-1130.
  • No related research data.
  • No similar publications.