Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Angerer, Thomas; Hagemann, Steffen G.; Walde, Detlef; Halverson, Galen P.; Boyce, Adrian J. (2016)
Publisher: Elsevier B.V.
Languages: English
Types: Article
The Rapitan-type banded iron formation (BIF) in the Banda Alta Formation (Fm) of the Neoproterozoic Jacadigo Group in Brazil was deposited in a redox-stratified, marine sub-basin, which was strongly influenced by glacial advance/retraction cycles with temporary influx of continental freshwater and upwelling metal-enriched seawater from deeper anoxic parts. These new finding are based on new stratigraphic, whole-rock geochemical, and stable Fe and C isotope data from the “Santa Cruz” hematite deposit near Corumbá, Mato Grosso do Sul, where a stratigraphy of lower and upper dolomite-rich and intermediate chert-rich BIF facies with up to three intercalated diamictites is revealed. The Ca-Mg-Fe-Mn-carbonate-chert and chert BIF (∼30-45 wt% Fe) of the lower dolomite-rich facies shows chemical signatures consistent with well-oxidized seawater, i.e. low (Pr/Yb)PAAS, strong negative CePAAS-, and positive GdPAAS- and YPAAS-anomalies, as well as negative-δ13C carbonate typical for Neoproterozoic glaciogenic carbonates. Sedimentation in a rather shallow water depth during relatively warm interglacial periods was likely influenced by abundant freshwater from fluviatile runoff and melting icebergs. In such conditions abundant microbial activity accommodated CO2 sequestration in carbonates as spheroids and mats and fractionated δ57Fe (-2.6 and -1.2‰) in primary Fe-hydroxides. In contrast, the intermediate chert-rich facies, characterized by chert-hematite BIF (∼35-55 wt% Fe) and isolated hematite chert and hematite mud, recorded trace element signatures of non-oxidized (absence of Ce anomalies and variable YPAAS-anomalies), more metal-enriched (Fe, Mn, Si, Ni, Zn, Pb, U) seawater, thus deposition was within and below the shallow-level redoxcline during ice cover. Colder water and isolation from sunlight reduced microbial activity, and thus an almost non-fractionated δ 57Fe (-0.7 to 0.0‰) fluid signature reveals that hydrothermal (MOR) vents or (sub-) seafloor alteration of mafic or felsic rocks, or shales fertilized seawater with metals. All results lead to the model that the Jacadigo Group formed during one major marine transgression-regression cycle, and BIF facies in the Banda Alta Fm were a response to first- and second-order periodic variations of the depth of the redoxcline, induced by the juxtaposition of glacial advance/retraction cycles, active graben tectonics, and glacial isostatic adjustment or eustatic water level changes. The chert-rich BIF facies marked the maximum of transgression. Age and tectonic setting of the Jacadigo basin remains contentious: it may represent a continental back arc basin of the Brasiliano collision zone (∼590 Ma), in which submarine alteration was possibly related to low-temperature hydrothermal fluids moving through the active graben system (as an alternative to basin-wide benthic pore water flux). This would place the Jacadigo group to the suite of Ediacarian “Gaskier” glaciations, although a relationship to the Marinoan glaciation (660-635 Ma), mainly based on the published sedimentation age-bracket of 706-587 Ma, is also possible.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 UWA ID 0 m core
    • m.a.s.l. 483.4 depth [m] 299.5 0
    • 100 mm 500 mm
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article