LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bernal Lopez, S. (2016)
Publisher: RILEM
Languages: English
Types: Article
Subjects:
The utilisation of near-neutral salts as activators to produce alkali-activated slag cements offers several technical advantages, including reduced alkalinity of the binders, minimising the risk associated with handling of highly alkaline materials, and better workability of the fresh paste compared to that of sodium silicate-activated slag cements. Despite these evident advantages, the delayed setting and slow early-age mechanical strength development of these cements have limited their adoption and commercialisation. Recent studies have demonstrated that these limitations can be overcome by selecting slags with chemistry, which is more prone to react with near-neutral salts, or by adding mineral additives. A brief overview of the most recent advances in alkali-activation of slags using either sodium carbonate or sodium sulfate as activators is reported, highlighting the role of material design parameters in the kinetics of reaction and phase evolution of these cements, as well as the perspectives for research and development of these materials.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J.L. Provis et al., Historical aspects and overview. In: J.L. Provis, J.S.J. van Deventer (Eds), Alkali-activated materials. Springer Netherlands, 2014.
    • [2] S.A. Bernal, E.D. Rodríguez, A.P. Kirchheim, J.L. Provis, Management and valorisation of wastes through use in producing alkali-activated cement materials. J Chem Technol Biotechnol (2016) DOI: 10.1002/jctb.4927.
    • [3] J.L. Provis et al., Demonstration projects and applications in building and civil Infrastructure. In: J.L. Provis, J.S.J. van Deventer (Eds), Alkaliactivated materials. Springer Netherlands, 2014.
    • [4] E. Rodríguez, S.A. Bernal, R. Mejía de Gutierrez, F. Puertas, Alternative concrete based on alkali-activated slag. Mater Construcc (2008) 58 (291): 53-67.
    • [5] S.A. Bernal, R. Mejía de Gutiérrez, F. Ruiz, H. Quiñones, J.L. Provis, High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends. Mater Construcc (2012) 62 (308): 471-488.
    • [6] S.A. Bernal, E.D. Rodríguez, R. Mejía de Gutiérrez, J.L. Provis, Performance of alkali-activated slag mortars exposed to acids. J Sustain Cement-Based Mater (2012) 1 (3): 138-151.
    • [7] J.L. Provis, A. Palomo, C. Shi, Advances in understanding alkaliactivated materials. Cem Concr Res (2015) 78: 110-125.
    • [8] C. Shi, A. Fernández-Jiménez, A. Palomo, New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem Concr Res (2011) 41 (7): 750-763.
    • [9] S.A. Bernal et al., Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res (2013) 53: 127-144.
    • [10] F. Winnefeld, M. Ben Haha, G. Le Saout, M. Costoya, S.-C. Ko, B. Lothenbach, Influence of slag composition on the hydration of alkaliactivated slags. J Sustain Cement-Based Mater (2015) 4 (2): 1-17.
    • [11] A. Fernández-Jiménez, F. Puertas, Setting of alkali-activated slag cement. Influence of activator nature. Adv Cem Res (2001) 13 (3): 115-121.
    • [12] S.A. Bernal, R. Mejía de Gutiérrez, J.L. Provis, Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater (2012) 33: 99-108.
    • [13] I. Ismail et al., Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr Build Mater (2013) 48: 1187-1201.
    • [14] S.A. Bernal, J.L. Provis, V. Rose, R. Mejía de Gutiérrez, Highresolution X-ray diffraction and fluorescence microscopy characterization of alkali-activated slag-metakaolin binders. J Am Ceram Soc (2013) 96 (6): 1951-1957.
    • [15] S.A. Bernal, V. Rose, J.L. Provis, The fate of iron in blast furnace slag particles during alkali-activation. Mater Chem Phys (2014) 146 (1): 1-5.
    • [16] R.J. Myers, B. Lothenbach, S.A. Bernal, J.L. Provis, Thermodynamic modelling of alkali-activated slag cements. App Geochem (2015) 61: 233-247.
    • [17] G. Habert, J.B. d'Espinose de Lacaillerie, N. Roussel, An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Clean Prod (2011) 19 (11): 1229-1238.
    • [18] G. Habert, C. Ouellet-Plamondon, Recent update on the environmental impact of geopolymers. RILEM Tech Lett (2016) 1: 17-23.
    • [19] S.A. Bernal, E.D. Rodríguez, R. Mejía de Gutiérrez, J.L. Provis, Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Mater Construcc (2015) 65 (318): 1-10.
    • [20] S.A. Bernal, E.D. Rodríguez, R. Mejía de Gutiérrez, J.L. Provis, S. Delvasto, Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valor (2012) 3 (1): 99-108.
    • [21] V. Živica, Effectiveness of new silica fume alkali activator. Cem Concr Comp (2006) 28 (1): 21-25.
    • [22] J.L. Provis, S.A. Bernal, Geopolymers and related alkali-activated materials. Annu Rev Mater Res (2014) 44: 299-327.
    • [23] Y. Bai, N. Collier, N. Milestone, C. Yang, The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. J Nucl Mater (2011) 413 (3): 183-192.
    • [24] G. Steinhauser, Cleaner production in the Solvay process: general strategies and recent developments. J Clean Prod (2008) 16 (7): 833- 841.
    • [25] S.A. Bernal et al., Binder chemistry-high-calcium alkali-activated materials. In: J.L. Provis, J.S.J. van Deventer (Eds), Alkali-activated materials. Springer Netherlands, 2014.
    • [26] E. Douglas, J. Brandstetr, A preliminary study on the alkali activation of ground granulated blast-furnace slag. Cem Concr Res (1990) 20 (5): 746-756.
    • [27] A.R. Sakulich, S. Miller, M.W. Barsoum, Chemical and microstructural characterization of 20-month-old alkali-activated slag cements. J Am Ceram Soc (2010) 93 (6): 1741-1748.
    • [28] H. Xu, J.L. Provis, J.S.J. van Deventer, P.V. Krivenko, Characterization of aged slag concretes. ACI Mater J (2008) 105 (2): 131-139.
    • [29] S.A. Bernal, J.L. Provis, R.J. Myers, R. San Nicolas, J.S.J. van Deventer, Role of carbonates in the chemical evolution of sodium carbonateactivated slag binders. Mater Struct (2015) 48: 517-529.
    • [30] M. Kovtun, E.P. Kearsley, J. Shekhovtsova, Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate. Cem Concr Res (2015) 72: 1-9.
    • [31] A. Fernández-Jiménez, F. Puertas, I. Sobrados, J. Sanz, Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator. J Am Ceram Soc (2003) 86 (8): 1389- 1394.
    • [32] A.J. Moseson, Design and Implementation of Alkali Activated Cement for Sustainable Development, PhD Thesis, Philadelphia, Drexel University, 2011.
    • [33] X. Ke, S.A. Bernal, J.L. Provis, Controlling the kinetics of reaction of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cem Concr Res (2015) 81: 24-37.
    • [34] J. Escalante-García, A.F. Fuentes, A. Gorokhovsky, P.E. Fraire-Luna, G. Mendoza-Suarez, Hydration products and reactivity of blastfurnace slag activated by various alkalis. J Am Ceram Soc (2003) 86 (12): 2148-2153.
    • [35] S.A. Bernal et al., MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkaliactivated binders. Cem Concr Res (2014) 57: 33-43.
    • [36] S.A. Bernal, X. Ke, J.L. Provis, Activation of slags using near-neutral salts: The importance of slag chemistry. The 14th International Congress on Chemistry of Cement. Beijing, China, 2015.
    • [37] R.J. Myers, S.A. Bernal, J.L. Provis, A thermodynamic model for C(N-)A-S-H gel: CNASH_ss. Derivation and validation. Cem Concr Res (2014) 66: 27-47.
    • [38] N. Mobasher, S.A. Bernal, O.H. Hussain, D.C. Apperley, H. Kinoshita, J.L. Provis, Characterisation of Ba(OH)2-Na2SO4-blast furnace slag cement-like composites for the immobilisation of sulphate bearing nuclear wastes. Cem Concr Res (2014) 66: 64-74.
    • [39] A.M. Rashad, Y. Bai, P.A.M. Basheer, N.C. Collier, N.B. Milestone, Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem Concr Res (2012) 42 (2): 333-343.
    • [40] N. Mobasher, B. S.A., P. J.L, Structural evolution of an alkali sulphate activated slag cement. J Nucl Mater (2016) 468: 97-104.
    • [41] A.M. Rashad, Y. Bai, P.A.M. Basheer, N.B. Milestone, N.C. Collier, Hydration and properties of sodium sulfate activated slag. Cem Concr Comp (2013) 37 (0): 20-29.
    • [42] B.A. Clark, P.W. Brown, The formation of calcium sulfoaluminate hydrate compounds Part II. Cem Concr Res (2000) 30: 233 - 240.
    • [43] X. Ke, S.A. Bernal, J.L. Provis, The influence of calcined layered double hydroxides on chloride binding in alkali-activated slag cement. 35th Cement and Concrete Science Conference. Aberdeen, Scotland, 2015.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article