Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lee, Martin; Chatzitheodoridis, Elias (2016)
Publisher: Wiley
Languages: English
Types: Article
A scanning and transmission electron microscope study of aluminosilicate glasses within melt inclusions from the Martian meteorite Nakhla shows that they have been replaced by berthierine, an aluminum-iron serpentine mineral. This alteration reaction was mediated by liquid water that gained access to the glasses along fractures within enclosing augite and olivine grains. Water/rock ratios were low, and the aqueous solutions were circumneutral and reducing. They introduced magnesium and iron that were sourced from the dissolution of olivine, and exported alkalis. Berthierine was identified using X-ray microanalysis and electron diffraction. It is restricted in its occurrence to parts of the melt inclusions that were formerly glass, thus showing that under the ambient physico-chemical conditions, the mobility of aluminum and silicon were low. This discovery of serpentine adds to the suite of postmagmatic hydrous silicates in Nakhla that include saponite and opal-A. Such a variety of secondary silicates indicates that during aqueous alteration compositionally distinct microenvironments developed on sub-millimeter length scales. The scarcity of berthierine in Nakhla is consistent with results from orbital remote sensing of the Martian crust showing very low abundances of aluminum-rich phyllosilicates.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alexander G. B., Heston W. M., and Iler R. K. 1954. The solubility of amorphous silica in water. The Journal of Physical Chemistry 58:453-455.
    • Ashworth J. R. and Hutchison R. 1975. Water in noncarbonaceous stony meteorites. Nature 256:714-715.
    • Boctor N.Z., Alexander C. M. O'D., Wang J., and Hauri E. 2003. The sources of water in Martian meteorites: Clues from hydrogen isotopes. Geochimica et Cosmochimica Acta 67:3971-3989.
    • Bridges J. C. and Grady M. M. 2000. Evaporite mineral assemblages in the nakhlite (Martian) meteorites. Earth and Planetary Science Letters 176:267-279.
    • Brindley G. W. 1982. Chemical compositions of berthierinesA review. Clays and Clay Minerals 30:153-155.
    • Bunch T. E. and Reid A. M. 1975. The nakhlites Part 1: Petrography and mineral chemistry. Meteoritics 10:303- 315.
    • Carr R. H., Grady M. M., Wright I. P., and Pillinger C. T. 1985. Martian atmospheric carbon dioxide and weathering products in Mars meteorites. Nature 314:248-250.
    • Changela H. G. and Bridges J. C. 2011. Alteration assemblages in the nakhlites: Variation with depth on Mars. Meteoritics & Planetary Science 45:1847-1867.
    • Chatzitheodoridis E. and Turner G. 1990. Secondary minerals in the Nakhla meteorite. Meteoritics 25:354.
    • Chatzitheodoridis E., Haigh S., and Lyon I. 2014. A conspicuous clay ovoid in Nakhla: Evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology. Astrobiology 14:651-693.
    • Chevrier V., Poulet F., and Bibring J.-P. 2007. Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448:60-63.
    • Ehlmann B. L., Mustard J. F., and Murchie S. L. 2010. Geological setting of serpentine deposits on Mars. Geophysical Research Letters 37:L06201.
    • Friedman-Lentz R. C., Taylor G. J., and Treiman A. H. 1999. Formation of a martian pyroxenite: A comparative study of the nakhlite meteorites and Theo's Flow. Meteoritics & Planetary Science 34:919-932.
    • Gooding J. L., Wentworth S. J., and Zolensky M. E. 1991. Aqueous alteration of the Nakhla meteorite. Meteoritics 26:135-143.
    • Goodrich C. A., Treiman A. H., Filiberto J., Gross J., and Jercinovic M. 2013. K2O-rich trapped melt in olivine in the Nakhla meteorite: Implications for petrogenesis of nakhlites and evolution of the Martian mantle. Meteoritics & Planetary Science 48:2371-2405.
    • Hallis L. J., Taylor G. J., Nagashima K., Huss G. R., Needham A. W., Grady M. M., and Franchi I. A. 2012a. Hydrogen isotope analyses of alteration phases in the nakhlite Martian meteorites. Geochimica et Cosmochimica Acta 97:105-119.
    • Hallis L. J., Taylor G. J., Nagashima K., and Huss G. R. 2012b. Magmatic water in the martian meteorite Nakhla. Earth and Planetary Science Letters 359-360:84-92.
    • Harvey R. P. and McSween H. Y. 1992. The parent magma of the nakhlite meteorites: Clues from melt inclusions. Earth and Planetary Science Letters 111:467-482.
    • Hicks L. J., Bridges J. C., and Gurman S. J. 2014. Ferric saponite and serpentine in the nakhlitemartian meteorites. Geochimica et Cosmochimica Acta 136:194-210.
    • Hornibrook E. R. C. and Longstaffe F. J. 1996. Berthierine from the lower Cretaceous Clearwater formation, Alberta, Canada. Clays and Clay Minerals 44:1-21.
    • Hu S., Lin Y., Zhang J., Hao J., Feng L., Xu L., Yang W., and Yang J. 2014. NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: Hydrogen isotope evidence for recent past underground hydrothermal activity on Mars. Geochimica et Cosmochimica Acta 140:321-333.
    • Hurowitz J. A., McLennan S. M., Tosca N. J., Arvidson R. E., Michalski J. R., Ming D. W., Schroder C., and Squyres S. W. 2006. In situ and experimental evidence for acidic weathering of rocks and soils on Mars. Journal of Geophysical Research-Planets 111:E02S19.
    • Imae N. and Ikeda Y. 2007. Petrology of the Miller Range 03346 nakhlite in comparison with the Yamato-00593 nakhlite. Meteoritics & Planetary Science 42:171-184.
    • Karlsson H. R., Clayton R. N., Gibson E. K. Jr, and Mayeda T. K. 1992. Water in SNC meteorites: Evidence for a Martian hydrosphere. Science 255:1409-1411.
    • Lee M. R., Bland P. A., and Graham G. 2003. Preparation of TEM samples by focused ion beam (FIB) techniques: Applications to the study of clays and phyllosilicates in meteorites. Mineralogical Magazine 67:581-592.
    • Lee M. R., Tomkinson T., Mark D. F., Stuart F. M., and Smith C. L. 2013. Evidence for silicate dissolution on Mars from the Nakhla meteorite. Meteoritics & Planetary Science 48:224-240.
    • Lee M. R., MacLaren I., Andersson S. M. L., Kovacs A., Tomkinson T., Mark D. F., and Smith C. L. 2015a. OpalA in the Nakhla meteorite: A tracer of ephemeral liquid water in the Amazonian crust of Mars. Meteoritics & Planetary Science 50:1362-1377.
    • Lee M. R., Tomkinson T., Hallis L. J., and Mark D. F. 2015b. Formation of iddingsite veins in the Martian crust by centripetal replacement of olivine: Evidence from the nakhlite meteorite Lafayette. Geochimica et Cosmochimica Acta 154:49-65.
    • Leshin L. A., Epstein S., and Stolper E. M. 1996. Hydrogen isotope geochemistry of SNC meteorites. Geochimica et Cosmochimica Acta 60:2635-2650.
    • McSween H. Y. Jr. 1985. SNC Meteorites: Clues to Martian petrologic evolution? Reviews in Geophysics 23:391-416.
    • McSween H. Y. Jr. 1994. What we have learned about Mars from SNC meteorites. Meteoritics 29:757-779.
    • Mustard J. F., Murchie S. L., Pelkey S. M., Ehlmann B. L., Milliken R. E., Grant J. A., Bibring J.-P., Poulet F., Bishop J., Dobrea E. N., Roach L., Seelos F., Arvidson R. E., Wiseman S., Green R., Hash C., Humm D., Malaret E., McGovern J. A., Seelos K., Clancy T., Clark R., Marais D. D., Izenberg N., Knudson A., Langevin Y., Martin T., McGuire P., Morris R., Robinson M., Roush T., Smith M., Swayze G., Taylor H., Titus T., and Wolff M. 2008. Hydrated silicate minerals on mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454:305-309.
    • Needham A. W., Abel R. L., Tomkinson T., and Grady M. M. 2013. Martian subsurface fluid pathways and 3D mineralogy of the Nakhla meteorite. Geochimica et Cosmochimica Acta 116:96-110.
    • Noguchi T., Nakamura T., Misawa K., Imae N., Aoki T., and Toh S. 2009. Laihunite and jarosite in the Yamato 00 nakhlites: Alteration products on Mars? Journal of Geophysical Research 114:E10004.
    • Prior G. T. 1912. The meteoric stones of El Nakhla El Baharia. Mineralogical Magazine 16:274-281.
    • Stronick N. A. and Schmincke H.-U. 2002. Palagonite - A review. International Journal of Earth Science 91:680- 697.
    • Swindle T. D. and Olson E. K. 2004. Ar-40-Ar-39 studies of whole rock nakhlites: Evidence for the timing of formation and aqueous alteration on Mars. Meteoritics & Planetary Science 39:755-766.
    • Tomkinson T., Lee M. R., Mark D. F., and Smith C. L. 2013. Sequestration of Martian CO2 by mineral carbonation. Nature Communications 4:2662.
    • Treiman A. H. 1993. The parent magma of the Nakhla (SNC) meteorite, inferred from magmatic inclusions. Geochimica et Cosmochimica Acta 57:4753-4767.
    • Treiman A. H. 2005. The nakhlite meteorites: Augiterich igneous rocks from Mars. Chemie der Erde 65:203- 270.
    • Treiman A. H. and Gooding J. L. 1991. Iddingside in the Nakhla meteorite: TEM study of mineralogy and texture of pre-terrestrial (Martian?) alterations. Meteoritics 26:402.
    • Usui T., Alexander C. M. O'D., Wang J. H., Simon J. I., and Jones J. H. 2012. Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth and Planetary Science Letters 357-358 11:9-129.
    • Usui T., Alexander C. M. O'D., Wang J. H., Simon J. I., and Jones J. H. 2015. Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth and Planetary Science Letters 410:140-151.
    • Velbel M. A. 2012. Aqueous alteration in Martian meteorites: Comparing mineral relations in igneous rockweathering of Martian meteorites and in the sedimentary cycle of Mars. In Sedimentary geology of Mars, edited by Grotzinger J. and Milliken R. Society for Sedimentary Geology Special Publication 102:97-117.
    • Velbel M. A. 2016. Aqueous corrosion of olivine in the Mars meteorite Miller Range (MIL) 03346 during Antarctic weathering: Implications for water on Mars. Geochimica et Cosmochimica Acta 180:126-145.
    • Watson L. L., Hutcheon I. D., Epstein S., and Stolper E. M. 1994. Water on Mars: Clues from D/H and water contents of hydrous phases in SNC meteorites. Science 265:85-90.
    • Wentworth S. J. and Gooding J. L. 1990. Pre-terrestrial origin of “rust” in the Nakhla meteorite (abstract #1672). 21st Lunar and Planetary Science Conference. CD-ROM Wray J. J., Ehlmann B. L., Squyres S. W., Mustard J. F., and Kirk R. L. 2008. Compositional stratigraphy of claybearing layered deposits at Mawrth Vallis, Mars. Geophysical Research Letters 35:L12202.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Download from

Funded by projects

Cite this article