LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Subramanian, Nachal D.; Callison, June; Catlow, Charles Richard; Wells, Peter P.; Dimitratos, Nikolaos (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: QD
Aqueous phase reforming of glycerol was studied over a series of γ-Al2O3 supported metal nanoparticle catalysts for hydrogen production in a batch reactor. Of the metals studied, Pt/Al2O3 was found to be the most active catalyst under the conditions tested. A further systematic study on the impact of reaction parameters, including stirring speed, pressure, temperature, and substrate/metal molar ratio, was conducted and the optimum conditions for hydrogen production (and kinetic regime) were determined as 240 °C, 42 bar, 1000 rpm, and substrate/metal molar ratio ≥ 4100 for a 10 wt% glycerol feed. The glycerol conversion and hydrogen yield achieved at these conditions were 18% and 17%, respectively, with negligible CO and CH4 formation. Analysis of the spent catalyst using FTIR provides an indication that the reaction pathway includes glycerol dehydrogenation and dehydration steps in the liquid phase in addition to typical reforming and water gas shift reactions in the gas phase.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article