Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wookey, J.; Kendall, J.M.; Barruol, G. (2002)
Languages: English
Types: Article
With time, convective processes in the Earth's mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material properties—in particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere and the lowermost-mantle analogue of the lithosphere, the D" region. Here we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the Tonga–Kermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Pierrehumbert, R. T. & Swanson, K. L. Baroclinic instability. Annu. Rev. Fluid Mech. 27, 419±467 (1995).
    • 2. Held, I. M. The macroturbulence of the troposphere. Tellus A 51, 59±70 (1999).
    • 3. Green, J. S. Transfer properties of the large scale eddies and the general circulation of the atmosphere. Q. J. R. Meteorol. Soc. 96, 157±185 (1970).
    • 4. Stone, P. H. A simpli®ed radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci. 29, 405±418 (1972).
    • 5. Branscome, L. E. A parameterization of transient eddy heat ¯ux on a beta plane. J. Atmos. Sci. 41, 2508±2521 (1983).
    • 6. Held, I. M. & Larichev, V. D. A scaling theory for horizontally homogeneous, baroclinically unstable ¯ow on a beta plane. J. Atmos. Sci. 53, 946±952 (1996).
    • 7. Haine, T. W. N. & Marshall, J. Gravitational, symmetric and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr. 28, 634±658 (1998).
    • 8. Barry, L., Thuburn, J. & Craig, G. C. GCM tests of some possible dynamical constraints on the midlatitude atmosphere: The v9-T9 correlation, PV homogenisation and the dividing isentrope. Q. J. R. Meteorol. Soc. (submitted).
    • 9. Pavan, V. & Held, I. M. The diffusive approximation for eddy ¯uxes in baroclinically unstable jets. J. Atmos. Sci. 53, 1262±1272 (1996).
    • 10. Eady, E. T. Long waves & cyclone waves. Tellus 1, 33±52 (1949).
    • 11. Charney, J. G. The dynamics of long waves in a baroclinic westerly current. J. Meteorol. 4, 135±162 (1947).
    • 12. Held, I. M. The vertical scale of an unstable baroclinic wave and its importance for eddy heat ¯ux parameterisation. J. Atmos. Sci. 35, 572±576 (1978).
    • 13. Stone, P. H. & Yao, M.-S. Development of a 2-dimensional zonally averaged statistical-dynamic model. 3. The parameterisation of eddy ¯uxes of heat and moisture. J. Clim. 3, 726±740 (1990).
    • 14. Charney, J. G. Geostrophic turbulence. J. Atmos. Sci. 28, 1087±1095 (1971).
    • 15. Salmon, R. Lectures on Geophysical Fluid Dynamics (Oxford Univ. Press, Oxford, 1998).
    • 16. Larichev, V. D. & Held, I. M. Eddy amplitudes and ¯uxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr. 25, 2285±2297 (1995).
    • 17. Rhines, P. B. Waves and turbulence on a beta-plane. J. Fluid. Mech. 69, 417±443 (1975).
    • 18. James, I. N. Introduction to Circulating Atmospheres (Cambridge Univ. Press, Cambridge, 1994).
    • 19. Golitsyn, G. S. A similarity approach to the general circulation of planetary atmospheres. Icarus 13, 1±24 (1970).
    • 20. Stone, P. H. & Miller, D. A. Empirical relations between seasonal changes in meridional temperature gradients and meridional ¯uxes of heat. J. Atmos. Sci. 37, 1708±1721 (1980).
    • 21. Vallis, G. K. Numerical studies of eddy transport properties in eddy-resolving and parameterised models. Q. J. R. Meteorol. Soc. 114, 183±204 (1988).
    • 22. Stone, P. H. & Branscome, L. Diabatically forced, nearly inviscid eddy regimes. J. Atmos. Sci. 49, 355± 367 (1992).
    • 23. Panetta, R. L. Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 29, 2073±2106 (1993).
    • 24. James, I. N. Two parameterisations of the temperature ¯ux due to baroclinic waves. Q. J. R. Meteorol. Soc. 123, 1±16 (1997).
    • 25. Visbeck, M., Marshall, J. & Haine, T. Speci®cation of eddy transfer coef®cients in coarse resolution ocean circulation models. J. Phys. Oceanogr. 27, 381±402 (1997).
    • 26. Forster, P. M. de F., Blackburn, M., Glover, R. & Shine, K. P. An examination of climate sensitivity for idealised climate change experiments in an intermediate general circulation model. Clim. Dyn. 16, 833±849 (2000).
    • 27. Barry, L. Predicting Eddy Heat Transport in the Troposphere Thesis, Univ. Reading (2000).
    • 28. Boer, G. & Denis, B. Numerical convergence of the dynamics of a GCM. Clim. Dyn. 13, 359±374 (1997).
    • 1. Montagner, J.-P. Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers .... Pure Appl. Geophys. 151, 223±256 (1998).
    • 2. Silver, P. G. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu. Rev. Earth Planet Sci. 24, 385±432 (1996).
    • 3. Savage, M. K. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev. Geophys. 37, 65±106 (1999).
    • 4. Kendall, J.-M. & Silver, P. G. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M., Knittle, E. & Buffett, B.) 97±118 (Geodynamics series 28, American Geophysical Union, Washington DC, 1998).
    • 5. Karato, S. & Wu, P. Rheology of the upper mantle: A synthesis. Science 260, 771±778 (1993).
    • 6. Vinnik, L. P. & Montagner, J.-P. Shear wave splitting in the mantle Ps phase. Geophys. Res. Lett. 23, 2449±2452 (1996).
    • 7. Vinnik, L. P., Chevrot, S. & Montagner, J.-P. Seismic evidence of ¯ow at the base of the upper mantle. Geophys. Res. Lett. 25, 1995±1998 (1998).
    • 8. Tong, C., Gudmundsson, O. & Kennett, B. L. N. Shear wave splitting in refracted waves returned from the upper mantle transition zone beneath northern Australia. J. Geophys. Res. 99, 15783±15797 (1994).
    • 9. Fouch, M. J. & Fischer, K. M. Mantle anisotropy beneath northwest Paci®c subduction zone. J. Geophys. Res. 101, 15987±16002 (1996).
    • 10. Fischer, K. & Wiens, D. The depth distribution of mantle anisotropy beneath the Tonga subduction zone. Earth Planet. Sci. Lett. 142, 253±260 (1996).
    • 11. Montagner, J.-P. & Kennett, B. L. N. How to reconcile body-wave and normal-mode reference Earth models. Geophys. J. Int. 125, 229±248 (1996).
    • 12. Barruol, G. & Hoffmann, R. Upper mantle anisotropy beneath Geoscope stations. J. Geophys. Res. 104, 10757±10773 (1999).
    • 13. Clitheroe, G. & Van der Hilst, R. in Structure and Evolution of the Australian Continent (ed. Braun, J. et al.) 73±78 (Geodynamics series 26, American Geophysical Union, Washington DC, 1998).
    • 14. OÈzalaybey, S. & Chen, W. Frequency dependent analysis of SKS/SKKS waveforms observed in Australia: evidence for null birefringence. Phys. Earth Planet. Inter. 114, 197±210 (1999).
    • 15. Silver, P. G. & Chan, W. W. Implications for continental structure and evolution from seismic anisotropy. Nature 335, 34±39 (1988).
    • 16. Wolfe, C. J. & Silver, P. G. Seismic anisotropy of oceanic upper mantle: Shear-wave splitting methodologies and observations. J. Geophys. Res. 103, 749±771 (1998).
    • 17. Kendall, J.-M. & Thomson, C. J. Seismic modelling of subduction zones with inhomogeneity and anisotropy, I: Teleseismic P-wavefront geometry. Geophys. J. Int. 112, 39±66 (1993).
    • 18. Kirby, S. H., Durham, W. B. & Stern, L. A. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science 252, 216±225 (1991).
    • 19. Anderson, D. L. Thermally induced phase changes, lateral heterogeneity of the mantle, continental roots and deep slab anomalies. J. Geophys. Res. 92, 13968±13980 (1987).
    • 20. Mainprice, D., Barruol, G. & IsmaÈõl, W. B. in Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (eds Karato, S., Fortre, A., Masters, T. G. & Stixrude, L.) 237±264 (Geophysical Monographs 117, American Geophysical Union, Washington DC, 2000).
    • 21. Karato, S., Dupas-Bruzek, C. & Rubie, D. Plastic deformation of silicate spinel under the transitionzone conditions of the Earth's mantle. Nature 395, 266±269 (1998).
    • 22. Meade, C. P., Silver, P. G. & Kaneshima, S. Laboratory and seismological observations of lower mantle isotropy. Geophys. Res. Lett. 22, 1293±1296 (1995).
    • 23. Yeganeh-Haeri, A. Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite. Phys. Earth Planet. Inter. 87, 111±121 (1994).
    • 24. Oganov, A. R., Brodholt, J. P. & Price, G. D. The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle. Nature 411, 934±937 (2001).
    • 25. Stixrude, L. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M., Knittle, E. & Buffett, B.) 83±96 (Geodynamics series 28, American Geophysical Union, Washington DC, 1998).
    • 26. Gaherty, J. B. & Jordan, T. H. Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science 268, 1468±1471 (1995).
    • 27. Kusznir, N. J. Subduction body force stresses and viscosity structure at the 410 km and 660 km phase transitions. Eos 81, 1081 (2000).
    • 28. Ringwood, A. E. Role of the transition zone and 660 km discontinuity in mantle dynamics. Phys. Earth Planet. Inter. 86, 5±24 (1994).
    • 29. Mitrovica, J. X. & Forte, A. M. Radial pro®le of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observations. J. Geophys. Res. 102, 2751±2769 (1997).
    • 30. Hirose, K., Fei, Y., Ma, Y. & Mao, H.-K. The fate of subducted basaltic crust in the Earth's lower mantle. Nature 397, 53±56 (1999).
    • 31. Widiyantoro, S., Kennett, B. L. N. & Van der Hilst, R. Seismic tomography with P and S data reveals lateral variations in the rigidity of deep slabs. Earth Planet. Sci. Lett. 173, 91±100 (1999).
    • 32. Van der Hilst, R. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature 374, 154±157 (1995).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article