Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zeng, H; Konicek, AR; Moldovan, N; Mangolini, F; Jacobs, T; Wylie, I; Arumugam, PU; Siddiqui, S; Carpick, RW; Carlisle, JA (2015)
Publisher: Elsevier
Languages: English
Types: Article
This paper reports the recent development and applications of conductive boron-doped ultrananocrystalline diamond (BD-UNCD). The authors have determined that BD-UNCD can be synthesized with an H-rich gaseous chemistry and a high CH4/H2 ratio, which is opposite to previously reported methods with Ar-rich or H-rich gas compositions but utilizing very low CH4/H2 ratios. The BD-UNCD reported here has a resistivity as low as 0.01 ohm cm, with low roughness (<10 nm) and a wide deposition temperature range (450–850 °C). The properties of this BD-UNCD were studied systematically using resistivity characterization, scanning and transmission electron microscopy, Raman spectroscopy, and roughness measurements. Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy confirms that up to 97% of the UNCD is deposited as sp3 carbon. These various measurements also reveal additional special properties for this material, such as an “M” shape Raman signature, line-granular nano-cluster texture and high Csingle bondH bond surface content. A hypothesis is provided to explain why this new deposition strategy, with H-rich/Ar-lean gas chemistry and a high CH4/H2 ratio, is able to produce high sp3-content and/or heavily doped UNCD. In addition, a few emerging applications of BD-UNCD in the field of atomic force microscopy, electrochemistry and biosensing are reviewed here.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X Pan, Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions, Appl. Phys. Lett. 1994, 64, 1502-1504.
    • 2. S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H2, JOURNAL OF APPLIED PHYSICS 2001, 90, 118-122.
    • 3. A. R. Krauss, O. Auciello, M.Q. Ding, D. M. Gruen, Y.Huang, V. V. Zhironv, et al, Electron field emission for ultrananocrystalline diamond films, JOURNAL OF APPLIED PHYSICS 2001, 89, 2958-2967.
    • 4. D. M. Gruen, NANOCRYSTALLINE DIAMOND FILMS, Annu. Rev. Mater. Sci. 1999, 29, 211-259.
    • 5. O. Auciello, Are diamonds a MEMS' best friend? IEEE Microwave Magazine 2007, December, 61-75.
    • 6. D. M. Gruen, S. Liu, A. R. Krauss, and X. Pan, Buckyball microwave plasmas: Fragmentation and diamond-film growth, J. Appl. Phys. 1994, 75, 1758-1763.
    • 7. J. Philip, P. Hessa, T. Feygelson, J. E. Butler, S. Chattopadhyay, K. H. Chen, and L. C. Chen, Elastic, mechanical, and thermal properties of nanocrystalline diamond films, JOURNAL OF APPLIED PHYSICS 2003, 93, 2164-2171.
    • 8. M. N. R. Ashfold, P. W. May, C. A. Rego, N. M. Everitt, Thin Film Diamond by Chemical Vapour Deposition Methods, CHEMICAL SOCIETY REVIEWS 1994, 23, 21-30.
    • 9. Q. Chen, D. M. Gruen, A. R. Krauss, T. D. Corrigan, M. Witek, and G. M. Swain, Journal of The Electrochemical Society 2001, 148, E44-51.
    • 10. P. L. Hagans, P. M. Natishan, B. R. Stoner, and W. E. O'Gradya, Electrochemical Oxidation of Phenol Using Boron-Doped Diamond Electrodes, Journal of The Electrochemical Society 2001, 148, E298-E301.
    • 11. G. M. Swain, R. Ramesham, The Electrochemical Activity of Boron-Doped Polycrystalline Diamond Thin Film Electrodes, Anal. Chem. 1993, 65, 345-351.
    • 12. M. A. Rodrigo, P. A. Michaud, I. Duo, M. Panizza, G. Cerisola and Ch. Comninellis, Electrode for Wastewater Treatment Oxidation of 4-Chlorophenol at Boron-Doped Diamond, J. Electrochem. Soc. 2001, 148, D60-D64.
    • 13. A. Angela, A. Urtiaga, and I. Ortiz, Pilot Scale Performance of the Electro-Oxidation of Landfill Leachate at Boron-Doped Diamond Anodes, Environ. Sci. Technol. 2009, 43, 2035-2040.
    • 14. T.N. Rao, A. Fujishima, Recent advances in electrochemistry of diamond, Diamond and Related Materials 2000, 9, 384-389.
    • 15. J. A. Carlisle, Diamond Films Precious biosensors, Science 2004, 3, 668-669.
    • 16. E. Majid, K. B. Male, J. H. T. Luong, Boron doped diamond biosensor for detection of Escherchia coli, Journal of Agricultural and Food Chemistry 2008, 56, 7691-7695.
    • 17. K. Okano, H. Naruki, Y. Akiba, T Kurosu, M. Lida, and Y. Hirose, Synthesis of Diamond Thin Films Having Semiconductive properties, Japanese Journal of Applied Physics 1988, 27, L173-175.
    • 18. B. Bhushan, V. V. Subramaniam, A. Malshe, B. K. Gupta, and J. Ruan, Tribological properties of polished diamond films, J. Appl. Phys. 1993, 74, 4174-4180.
    • 19. A. R. Konicek, D. S. Grierson, P. U. P. A. Gilbert, W. G. Sawyer, A.V. Sumant, and R.W. Carpick, Origin of Ultralow Friction and Wear in Ultrananocrystalline Diamond 2008, 100, 235502-1-4.
    • 20. A. Sumant, D. S. Grierson, J. E. Gerbi, J. Birrell, U.D. Lanke, O. Auciello, et al., Toward the Ultimate Tribologiecal Interface: surface Chemistry and Nanotribology of Ultrananocrystalline Diamond, Adv. Mater. 2005, 17, 1039-1045.
    • 21. L. Tang, C. Tsai, W.W. Gerberich, L. Kruckeberg and D.R. Kania, Biocompatibility of chemical-vapour-deposited diamond, Biomaterials 1995, 16, 483-488.
    • 22. H. Zeng, P. U. Arumugam and J. A. Carlisle, UltraNanoCrystalline diamond as a biocompatible interfacial material for implantable devices, European Materials Research Society Spring Conference, Lille, France, European Materials Research Society, 2014, In press.
    • 23. S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L.A Crutiss, A.N.Goyette, et al., Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films, APPLIED PHYSICS LETTERS 2001, 79, 1441-1443.
    • 50. Vladimir V. Tsukruk and Srikanth Singamaneni, Scanning Probe Microscopy of Soft Matter: Fundamentals and Practices, Wiley-VCH, 2012, pp 52
    • 51. C. Su, L. Huang, K. Kjoller, K Babcock, Studies of tip wear processes in tapping modeatomic force microscopy, Ultramicroscopy, 2003, 97, 135-144 .
    • 52. P. C. Fletcher, J.R.Felts, Z. Dai, T.D.Jacobs, H. Zeng, W. Lee, et al., Wear-Resistant Diamond Nanoprobe Tips with Integrated Silicon Heater for Tip-Based Nanomanufacturing, ACS NANO 2010, 4, 3338-3344.
    • 53. B. P. Chaplin, I. Wyle, H. Zeng, J. A. Carlisle, J. Farrell, Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes, Journal of Applied Electrochemistry 2011, 41, 1329-1340.
    • 54. H. Zeng, P. U. Arumugam and J. A. Carlisle, Ultrananocrystalline diamond as a biocompatible antithrombogenic interfacial material for implantable devices, Physica Status Solidi A: Applications and Materials Science 2014, 31396-1-4
    • 55. R. L. McCreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev. 2008, 108, 2646-2687.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | GOALI/Collaborative Researc...
  • NIH | NIH Phase II-UNCD as Bio-In...
  • NSF | Materials World Network: Me...
  • NSF | SBIR Phase II: Low-cost Lon...

Cite this article