Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yang, DX; Frommhold, A; McClelland, A; Roth, J; Rosamond, M; Linfield, EH; Osmond, J; Palmer, RE; Robinson, APG (2016)
Publisher: Elsevier
Journal: Microelectronic Engineering
Languages: English
Types: Article
Subjects: Condensed Matter Physics, Surfaces, Coatings and Films, Electrical and Electronic Engineering, Electronic, Optical and Magnetic Materials, Atomic and Molecular Physics, and Optics
A novel negative tone molecular resist molecule featuring a tert-butyloxycarbonyl protected phenol malonate group bonded to a 1,8-Diazabicycloundece-7-ene is presented. The resist shows high-resolution capability in electron beam lithography at a range of beam energies. The resist demonstrated a sensitivity of 18.7 μC/cm2 at 20 kV. Dense features with a line width of 15 nm have been demonstrated at 30 kV, whilst a feature size of 12.5 nm was achieved for dense lines at 100 kV.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] International Technology Roadmap for Semiconductors, 2012 Edition, available from: http://www.itrs.net.
    • [2] L.R. Harriott, Proc. IEEE 89 (3) (2001) 366.
    • [3] U. Stamm, J. Kleinschmidt, K. Gaebel, H. Birner, I. Ahmad, D. Bolshukhin, J. Brudermann, T.D. Chinh, F. Flohrer, S. Goetze, G. Hergenhan, D. Kloepfel, V. Korobotchko, B. Mader, R. Mueller, J. Ringling, G. Schriever, C. Ziener, Proc. SPIE 5374 (2004) 133.
    • [4] C. Wagner, N. Harned, Nat. Photonics 4 (1) (2010) 24.
    • [5] T.H.P. Chang, M. Mankos, K.Y. Lee, L.P. Muray, Microelectron. Eng. 57 (2001) 117.
    • [6] S. Okazaki, Microelectron. Eng. 133 (2015) 23.
    • [7] I. Servin, N.A. Thiam, P. Pimenta-Barros, M.L. Pourteau, A.P. Mebiene, J. Jussot, J. Pradelles, P. Essomba, L. Lattard, P. Brandt, M. Wieland, Proc. SPIE 9423 (2015) 94231C.
    • [8] C. Klein, H. Loeschner, E. Platzgummer, Proc. SPIE 8323 (2012) 83230G.
    • [9] R. Freed, T. Gubiotti, J. Sun, F. Kidwingira, J. Yang, U. Ummethala, L.C. Hale, J.J. Hench, S. Kojima, W.D. Mieher, C.F. Bevis, S. Lin, W. Wang, Proc. SPIE 8323 (2012) 83230H.
    • [10] W.W. Hu, K. Sarveswaran, M. Lieberman, G.H. Bernstein, J. Vac. Sci. Technol. B 22 (2004) 1711.
    • [11] J.K. Yang, B. Cord, H. Duan, K.K. Berggren, J. Klingfus, S.W. Nam, K.B. Kim, M.J. Rooks, J. Vac. Sci. Technol. B 27 (2009) 6.
    • [12] R.A. Lawson, L.M. Tolbert, T.R. Younkin, C.L. Henderson, Proc. SPIE 7273 (2009) 72733E.
    • [13] M. Hori, T. Naruoka, H. Nakagawa, T. Fujisawa, T. Kimoto, M. Shiratani, T. Nagai, R. Ayothi, Y. Hishiro, K. Hoshiko, T. Kimura, Proc. SPIE 9422 (2015), 94220P.
    • [14] V. Singh, V.S.V. Satyanarayana, S.K. Sharma, S. Ghosh, K.E. Gonsalves, J. Mater. Chem. C 2 (12) (2014) 2118.
    • [15] J.K. Stowers, A. Telecky, M. Kocsis, B.L. Clark, D.A. Keszler, A. Grenville, C.N. Anderson, P.P. Naulleau, Proc. SPIE 7969 (2011) 796915.
    • [16] B. Cardineau, R.D. Re, H. Al-Mashat, M. Marnell, M. Vockenhuber, Y. Ekinci, C. Sarma, M. Neisser, D.A. Freedman, R.L. Brainard, Proc. SPIE 9051 (2014) 90511B.
    • [17] M. Neisser, K. Cummings, S. Valente, C. Montgomery, Y. Fan, K. Matthews, J. Chun, P.D. Ashby, Proc. SPIE 9422 (2015) 94220L.
    • [18] T. Takigawa, K. Kawabuchi, M. Yoshimi, Y. Kato, Microelectron. Eng. 1 (2) (1983) 121.
    • [19] D.X. Yang, A. Frommhold, X. Xue, R.E. Palmer, A.P.G. Robinson, J. Mater. Chem. C 2 (8) (2014) 1505.
    • [20] A. Frommhold, D.X. Yang, A. McClelland, J. Roth, X. Xue, M.C. Rosamond, E.H. Linfield, A.P.G. Robinson, J. Photopolym. Sci. Technol. 28 (4) (2015) 537.
    • [21] A. Frommhold, J. Manyam, R.E. Palmer, A.P.G. Robinson, Microelectron. Eng. 98 (2012) 552.
    • [22] A. Frommhold, D.X. Yang, J. Manyam, M. Manickam, E. Tarte, J.A. Preece, R.E. Palmer, A.P.G. Robinson, Nanotechnology (IEEE-NANO) 2012 12th IEEE Conference on, 2012 1.
    • [23] T. Kolb, C. Neuber, M. Krysak, C.K. Ober, H. Schmidt, Adv. Funct. Mater. 22 (2012) 3865.
    • [24] H. Gokan, S. Esho, Y. Ohnishi, J. Electrochem. Soc. 130 (1983) 143.
    • [25] J. Manyam, Novel resist materials for next generation lithography(PhD thesis, School of Physics and Astronomy, University of Birmingham) 2010 (Available from: http://etheses.bham.ac.uk).
    • [26] M.A. McCord, M.J. Rooks, in: P. Rai-Choudhury (Ed.) Handbook of microlithography, micromachining, and microfabricaiton, 1, SPIE Press, Bellingham, WA 1997, p. 157.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article