Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fring, A.; Korff, C. (2000)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: Condensed Matter, QC, High Energy Physics - Theory

Classified by OpenAIRE into

arxiv: Nonlinear Sciences::Exactly Solvable and Integrable Systems, High Energy Physics::Theory
We provide analytical solutions to the thermodynamic Bethe ansatz equations in the large and small density approximations. We extend results previously obtained for leading order behaviour of the scaling function of affine Toda field theories related to simply laced Lie algebras to the non-simply laced case. The comparison with semi-classical methods shows perfect agreement for the simply laced case. We derive the Y-systems for affine Toda field theories with real coupling constant and employ them to improve the large density approximations. We test the quality of our analysis explicitly for the Sinh-Gordon model and the $(G_2^{(1)},D_4^{(3)})$-affine Toda field theory.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] P. Weisz, Phys. Lett. B67 (1977) 179; M. Karowski and P. Weisz, Nucl. Phys. B139 (1978) 445.
    • [2] Al.B. Zamolodchikov, Nucl. Phys. B342 (1990) 695; T.R. Klassen and E. Melzer, Nucl. Phys. B338 (1990) 485; B350 (1991) 635.
    • [3] Al.B. Zamolodchikov, Nucl. Phys. B348 (1991) 619.
    • [4] V.A. Fateev, Phys. Lett. B324 (1994) 45; Al.B. Zamolodchikov, Int. J. Mod. Phys. A10 (1995) 1125.
    • [5] A.B. Zamolodchikov and Al.B. Zamolodchikov, Nucl. Phys. B477 (1996) 577.
    • [6] C. Ahn, C. Kim and C. Rim, Nucl. Phys. B556 (1999) 505.
    • [7] C. Ahn, V.A. Fateev, C. Kim, C. Rim and B. Yang, Reflection Amplitudes of ADE Toda Theories and Thermodynamic Bethe Ansatz, hep-th/9907072.
    • [8] Al.B. Zamolodchikov, 4-th Bologna Workshop on CFT and Integrable Models, (Bologna, 1999).
    • [9] A.V. Mikhailov, M.A. Olshanetsky and A.M. Perelomov, Commun. Math. Phys. 79 (1981) 473; G. Wilson, Ergod. Th. Dyn. Syst. 1 (1981) 361; D.I. Olive and N. Turok, Nucl. Phys. B257 [FS14] (1985) 277.
    • [10] Al.B. Zamolodchikov, “Resonance Factorized Scattering and Roaming Trajectories”, Preprint ENS-LPS-335 (1991).
    • [11] M.J. Martins, Nucl. Phys. B394 (1993) 339.
    • [12] A. Fring, C. Korff and B.J. Schulz, Nucl. Phys. B549 (1999) 579.
    • [13] A. Bytsko and A. Fring, Nucl. Phys. B532 (1998) 588.
    • [14] Al.B. Zamolodchikov, Phys. Lett. B253 (1991) 391.
    • [15] V.G. Kac, “Infinite Dimensional Lie Algebras” (CUP, Cambridge, 1990).
    • [16] T. Oota, Nucl. Phys. B504 (1997) 738.
    • [17] A. Fring, C. Korff and B.J. Schulz, Nucl. Phys. B567 (2000) 409.
    • [18] E. Frenkel and N. Reshetikhin, Deformations of W-algebras associated to simple Lie algebras, q-alg/9708006 v2.
    • [19] P. Goddard and D.I. Olive, Int. J. Mod. Phys. A1 (1986) 303.
    • [20] Al.B. Zamolodchikov, Nucl. Phys. B358 (1991) 497; Nucl. Phys. B358 (1991) 524; Nucl. Phys. B366 (1991) 122.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article