Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Roemer, Rudolf A.; Schulz-Baldes, H. (2010)
Publisher: Springer New York LLC
Languages: English
Types: Preprint
Subjects: QA, Mathematical Physics, Condensed Matter - Disordered Systems and Neural Networks
A random phase property establishing in the weak coupling limit a link between quasi-one-dimensional random Schrödinger operators and full random matrix theory is advocated. Briefly summarized it states that the random transfer matrices placed into a normal system of coordinates act on the isotropic frames and lead to a Markov process with a unique invariant measure which is of geometric nature. On the elliptic part of the transfer matrices, this measure is invariant under the unitaries in the hermitian symplectic group of the universality class under study. While the random phase property can up to now only be proved in special models or in a restricted sense, we provide strong numerical evidence that it holds in the Anderson model of localization. A main outcome of the random phase property is a perturbative calculation of the Lyapunov exponents which shows that the Lyapunov spectrum is equidistant and that the localization lengths for large systems in the unitary, orthogonal and symplectic ensemble differ by a factor 2 each. In an Anderson-Ando model on a tubular geometry with magnetic field and spin-orbit coupling, the normal system of coordinates is calculated and this is used to derive explicit energy dependent formulas for the Lyapunov spectrum. \ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [ATAF] P. W. Anderson, D. J. Thouless, E. Abrahams, D. S. Fisher, New method for a scaling theory of localization, Phys. Rev. B 22, 3519-3526 (1980).
    • [Ando] T. Ando, Numerical study of symmetry effects on localization in two dimensions, Phys. Rev. B 40, 5325-5339 (1989).
    • [Ben] C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69, 731-808 (1997).
    • [BB] C. W. J. Beenakker, M. Bu¨ttiker, Suppression of shot noise in metallic diffusive conductors, Phys. Rev. Lett. 46, 1889-1892 (1992).
    • [BL] P. Bougerol, J. Lacroix, Products of Random Matrices with Applications to Schr¨odinger Operators, (Birkh¨auser, Boston, 1985).
    • [CB] J. T. Chalker, M. Bernhardt, Scattering theory, transfer matrices, and Anderson localization, Phys. Rev. Lett. 70, 982-985 (1993)
    • [Do1] O. N. Dorokhov, Electron localization in a multichannel conductor, Sov. Phys. JETP 58, 606-615 (1983).
    • [Do2] O. N. Dorokhov, On the coexistence of localized and extended electronic states in the metalic phase, Solid State Commun. 51, 381-384 (1984).
    • [Do3] O. N. Dorokhov, Solvable model of multichannel localization, Phys. Rev. B 37, 10526- 10541 (1988).
    • [Dys] F. Dyson, The dynamics of a disordered linear chain, Phys. Rev. 92, 1331-1338 (1953).
    • [EF] K. B. Efetov, A. I. Larkin, Kinetics of a quantum particle in long metallic wires, Sov. Phys. JETP 58, 444-451 (1983).
    • [FYMS] L. S. Froufe-P´erez, M. Y´epez, P. A. Mello, J. . S´aenz, Statistical scattering of waves in disordered waveguides: From microscopic potentials to limiting macroscopic statistics, Phys. Rev. E 75, 031113-031141 (2007).
    • [HP] F. Hiai, D. Petz, The Semicircle Law, Free Random Variables and Entropy, (AMS, Providence, 2000).
    • [HM] J. E. Howard, R. S. MacKay, Linear stability of symplectic maps, J. Math. Phys. 28, 1036-1051 (1987).
    • [MK] A. MacKinnon, B. Kramer, One-parameter scaling of localization length and conductance in disordered systems, Phys. Rev. Lett. 47, 1546-1549 (1981).
    • [MC] A. M. S. Macˆedo, J. T. Chalker, Effects of spin-orbit interactions in disordered conductors: A random-matrix approach, Phys. Rev. B 46, 14985-14994 (1992).
    • [Meh] M. L. Mehta, Random Matrices, Second Edition, (Academic Press, San Diego, 1991).
    • [MPK] P. A. Mello, P. Pereyra, N. Kumar, Macroscopic approach to multichannel disordered conductors, Ann. Phys. 181, 290-317 (1988).
    • [MS] P. A. Mello, B. Shapiro, Existence of a limiting distribution for disordered electronic conductors, Phys. Rev. B 37, 5860-5863 (1988).
    • [MSt] P. A. Mello, A. D. Stone, Maximum-entropy model for quantum-mechanical interference effects in metallic conductors, Phys. Rev. B 44, 3559-3576 (1991).
    • [MT] P. A. Mello, S. Tomsovic, Scattering approach to quantum electronic transport, Phys. Rev. B 46, 15963-15981 (1992).
    • [PF] L. Pastur, A. Figotin, Spectra of Random and Almost-Periodic Operators, (Springer, Berlin, 1992).
    • [PS] J.-L. Pichard, G. Sarma, Finite-size scaling approach to Anderson localisation I and II, J. Phys. C 14, L127-132 and L617-625 (1981).
    • [RS] R. R¨omer, H. Schulz-Baldes: Weak disorder expansion for localization lengths of quasi-1D systems, Euro. Phys. Lett. 68, 247-250 (2004).
    • [SS1] C. Sadel, H. Schulz-Baldes, Scaling diagram for the localization length at a band edge, Annales Henri Poincare 8, 1595-1621 (2007).
    • [SS2] Ch. Sadel, H. Schulz-Baldes, Random Lie group actions on compact manifolds: a perturbative analysis, preprint 2008.
    • [SS3] C. Sadel, H. Schulz-Baldes, Random Dirac operators with time reversal symmetry, preprint 2009, to appear in Commun. Math. Phys..
    • [Sch] H. Schmidt, Disordered one-dimensional crystals, Phys. Rev. 105, 425-441 (1957).
    • [SB1] H. Schulz-Baldes, Perturbation theory for an Anderson model on a strip, GAFA 14, 1089-1117 (2004).
    • [SB2] H. Schulz-Baldes, Rotation numbers for Jacobi matrices with matrix entries, Math. Phys. Elect. J. 13, 40 pages (2007).
    • [Tho] D. J. Thouless, Maximum metallic resistance in thin wires, Phys. Rev. Lett. 39, 1167- 1170 (1977).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article