Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Reading, M. A.; Van den Berg, Jakob; Zalm, P. C.; Armour, D. G.; Bailey, Paul; Noakes, T. C. Q.; Parisini, A.; Conard, T.; De Gendt, S. (2010)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QC
Ultrathin high-k layers such as hafnium oxide (HfO2) in combination with a subnanometer SiO2 or Hf silicate have emerged as Si compatible gate dielectric materials. Medium energy ion scattering (MEIS) analysis has been carried out on a range of such metal oxide chemical vapor deposition grown HfO2/SiO2 and HfSiOx(60%Hf)/SiO2 gate oxide films of thickness between 1 and 2 nm on Si(100), before and after decoupled plasma nitridation (DPN). The ability of MEIS in combination with energy spectrum simulation to provide quantitative layer information with subnanometer resolution is illustrated and the effect of the DPN process is shown. Excellent agreement on the deduced layer structures and atomic composition with the as grown layer parameters, as well as with those obtained from cross section electron microscopy and other studies, is demonstrated. MEIS analysis of a high-k, metal gate TiN/Al2O3/HfO2/SiO2/Si stack shows the interdiffusion, after thermal treatment, of Hf and Al from the caplayer, inserted to modify the metal gate workfunction.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1D. Schlom, S. Guha, and S. Datta, MRS Bull. 33, 1017 2008 .
    • 2http://www.intel.com/technology/architecture-silicon/45nm-core2/.
    • 3C. S. Kang, R. Choi, H. J. Cho, Y. H. Kim, and J. C. Lee, J. Vac. Sci.
    • Technol. B 22, 916 2004 .
    • 4H. Kobayashi, K. Imamura, K. Fukayama, S. Im, O. Maida, Y. Kim, H.
    • Kim, and D. Choi, Surf. Sci. 602, 1948 2008 .
    • 5http://www.i3-anna.org/.
    • 6T. Gustafsson, H. C. Lu, B. W. Busch, W. H. Schulte, and E. Garfunkel, Nucl. Instrum. Methods Phys. Res. B 183, 146 2001 .
    • 7J. A. van den Berg, G. Carter, D. G. Armour, M. Werner, R. D. Goldberg, E. H. J. Collart, P. Bailey, and T. C. Q. Noakes, Appl. Phys. Lett. 85, 3074 2004 .
    • 8M. Werner, J. A. van den Berg, D. G. Armour, W. Vandervorst, E. H. J.
    • Methods Phys. Res. B 216, 67 2004 .
    • 9E. P. Gusev, C. Cabral, M. Copel, C. D'Emic, and M. Gribelyuk, Microelectron. Eng. 69, 145 2003 .
    • 10J. Kim, W. N. Lennard, C. P. McNorgan, J. Hendriks, I. V. Mitchell, D.
    • Landheer, and J. Gredley, Curr. Appl. Phys. 3, 75 2003 .
    • 11H. S. Chang, H. Hwang, M.-H. Cho, and D. W. Moon, Appl. Phys. Lett. 86, 031906 2005 .
    • 12K. B. Chung, C. N. Whang, H. S. Chang, D. W. Moon, and M.-H. Cho, J.
    • Vac. Sci. Technol. A 25, 141 2007 .
    • 13H. Kitano, S. Abo, M. Mizutani, J. Tsuchimoto, T. Lohner, J. Gyulai, F.
    • Wakaya, and M. Takai, Nucl. Instrum. Methods Phys. Res. B 249, 246 2006 .
    • 14S. Bernardini, M. MacKenzie, O. Buiu, P. Bailey, T. C. Q. Noakes, W. M.
    • Davey, B. Hamilton, and S. Hall, Thin Solid Films 517, 459 2008 .
    • 15L. Miotti, R. P. Pezzi, M. Copel, and I. J. R. Baumvol, Nucl. Instrum.
    • Methods Phys. Res. B 266, 1162 2008 .
    • 16IGOR PRO, Wavemetrics http://www.wavemetrics.com .
    • 17P. Bailey et al. unpublished .
    • 18T. Conard, A. Franquet, W. Vandervorst, M. Reading, J. A. Van den Berg, S. Van Elschocht, T. Schram, and S. Degendt, ECS Trans. 16, 433 2008 .
    • 19F. De Smedt, C. Vinckier, I. Cornelissen, S. Degendt, and M. Heyns, J.
    • Electrochem. Soc. 147, 1124 2000 .
    • 20C. H. Cheng et al., IEEE Electron Device Lett. 22, 378 2001 .
    • 21S. F. Jang et al., IEEE Electron Device Lett. 22, 327 2001 .
    • 22P. Bailey, T. C. Q. Noakes, and D. P. Woodruff, Surf. Sci. 426, 358 1999 . http://www.dl.ac.uk/MEIS/ .
    • 23J. F. Ziegler, SRIM code http://www.srim.org/ .
    • 24W. K. Chu, J. W. Mayer, and M. Nicolet, Backscattering Spectrometry Academic, New York, 1978 .
    • 25H. H. Andersen, F. Besenbacher, P. Loftager, and W. Moeller, Phys. Rev.
    • A 21, 1891 1980 .
    • 26P. Bailey private communication .
    • 27J. B. Marrion and F. C. Young, Nuclear Reaction Analysis: Graphs and Tables North-Holland, Amsterdam, 1968 .
    • 28Y. Kido, T. Nishimura, Y. Hoshino, E. Toyoda, and T. Nakada, Phys. Rev.
    • B 64, 193403 2001 .
    • 29P. L. Grande, A. Hentz, R. P. Pezzi, I. J. R. Baumvol, and G. Schiwietz, Nucl. Instrum. Methods Phys. Res. B 256, 92 2007 .
    • 30R. P. Pezzi, P. L. Grande, M. Copel, G. Schiwietz, C. Krug, and I. J. R.
    • Baumvol, Surf. Sci. 601, 5559 2007 .
    • 31S. Ladas et al. unpublished .
    • 32A. Parisini et al. unpublished .
    • 33M. Kolbe, B. Beckhoff, M. Krumrey, M. Reading, J. Van den Berg, T.
    • Conard, and S. De Gendt, ECS Trans. 25, 293 2009 .
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article