LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Naude, Celeste E.; Schoonees, Anel; Senekal, Marjanne; Young, Taryn; Garner, Paul; Volmink, Jimmy (2014)
Publisher: Public Library of Science
Journal: PLoS ONE
Languages: English
Types: Article
Subjects: Statistics (Mathematics), Research Article, Biology and Life Sciences, Mathematics, Research and Analysis Methods, wg_120, Meta-Analysis, Medicine, Cardiology, wg_20, Clinical Medicine, Q, R, Nutrition, Physical Sciences, qu_75, Science, Research Assessment, Clinical Trials, Medicine and Health Sciences, Systematic Reviews, Statistical Methods
Background\ud \ud Some popular weight loss diets restricting carbohydrates (CHO) claim to be more effective, and have additional health benefits in preventing cardiovascular disease compared to balanced weight loss diets.\ud \ud Methods and Findings\ud \ud We compared the effects of low CHO and isoenergetic balanced weight loss diets in overweight and obese adults assessed in randomised controlled trials (minimum follow-up of 12 weeks), and summarised the effects on weight, as well as cardiovascular and diabetes risk. Dietary criteria were derived from existing macronutrient recommendations. We searched Medline, EMBASE and CENTRAL (19 March 2014). Analysis was stratified by outcomes at 3–6 months and 1–2 years, and participants with diabetes were analysed separately. We evaluated dietary adherence and used GRADE to assess the quality of evidence. We calculated mean differences (MD) and performed random-effects meta-analysis. Nineteen trials were included (n = 3209); 3 had adequate allocation concealment. In non-diabetic participants, our analysis showed little or no difference in mean weight loss in the two groups at 3–6 months (MD 0.74 kg, 95%CI −1.49 to 0.01 kg; I2 = 53%; n = 1745, 14 trials; moderate quality evidence) and 1–2 years (MD 0.48 kg, 95%CI −1.44 kg to 0.49 kg; I2 = 12%; n = 1025; 7 trials, moderate quality evidence). Furthermore, little or no difference was detected at 3–6 months and 1–2 years for blood pressure, LDL, HDL and total cholesterol, triglycerides and fasting blood glucose (>914 participants). In diabetic participants, findings showed a similar pattern.\ud \ud Conclusions\ud \ud Trials show weight loss in the short-term irrespective of whether the diet is low CHO or balanced. There is probably little or no difference in weight loss and changes in cardiovascular risk factors up to two years of follow-up when overweight and obese adults, with or without type 2 diabetes, are randomised to low CHO diets and isoenergetic balanced weight loss diets.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, et al. (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378: 804-814.
    • 2. World Health Organization (2004) Global strategy on diet, physical activity and health. World Health Assembly Resolution 57.17. Geneva: World Health Organization
    • 3. World Health Organization (2010) Global status report on noncommunicable diseases 2010. Geneva: World Health Organization
    • 4. Abegunde DO, Mathers CD, Adam T, Ortegon M, Strong K (2007) The burden and costs of chronic diseases in low-income and middle-income countries. Lancet 370: 1929-1938.
    • 5. World Health Organization (2008) The global burden of disease: 2004 update. Geneva, World Health Organization, 2008. Geneva: World Health Organization
    • 6. Atkins Nutritionals (2011) New Atkins. http://sa.atkins.com/. Atkins Nutritionals.
    • 7. WebMD (2012) The Atkins Diet. http://www.webmd.com/diet/atkins-dietwhat-it-is. WebMD.
    • 8. Noakes TD (2013) Low-carbohydrate and high-fat intake can manage obesity and associated conditions: Occasional survey. S Afr Med J 103: 826-830.
    • 9. Lagiou P, Sandin S, Lof M, Trichopoulos D, Adami HO, et al. (2012) Low carbohydrate-high protein diet and incidence of cardiovascular diseases in Swedish women: prospective cohort study. BMJ 344: e4026.
    • 10. Noto H, Goto A, Tsujimoto T, Noda M (2013) Low-carbohydrate diets and allcause mortality: a systematic review and meta-analysis of observational studies. PLoS One 8: e55030.
    • 11. Sjogren P, Becker W, Warensjo E, Olsson E, Byberg L, et al. (2010) Mediterranean and carbohydrate-restricted diets and mortality among elderly men: a cohort study in Sweden. Am J Clin Nutr 92: 967-974.
    • 12. Australian National Health and Medical Research Council and the New Zealand Ministry of Health (2006) Nutrient Reference Values for Australia and New Zealand: Including Recommended Dietary Intakes. Canberra: Australian National Health and Medical Research Council and the New Zealand Ministry of Health.
    • 13. EFSA Panel on Dietetic Products Nutrition and Allergies (NDA) (2010) Dietary Reference Values Parma: European Food Safety Authority (EFSA).
    • 14. Institute of Medicine Food and Nutrition Board (2002/2005) Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Washington, DC: National Academies Press.
    • 15. NNR Project Group (2004) Nordic Nutrition Recommendations NNR 2004. Working Group on Diet and Nutrition, NKE, Nordic Committee of Senior Officials for Food Issues, EK-Livs.
    • 16. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, et al. (2009) Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 360: 859-873.
    • 17. Higgins D, Green S, editors (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.1 [updated March 2011]. London: John Wiley & Sons, Ltd.
    • 18. Rencher AC (2002) Characterizing and displaying multivariate data. Methods of Multivariate Analysis. Hoboken NJ: John Wiley. pp. 43-81.
    • 19. The Nordic Cochrane Centre: The Cochrane Collaboration (2011) Review Manager (RevMan) 5.1 ed. Copenhagen: The Cochrane Collaboration, 2011.
    • 20. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a metaanalysis. Stat Med 21: 1539-1558.
    • 21. GRADE Working Group (2004-2007) GRADEprofiler (GRADEpro). 3.2.2 ed.
    • 22. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, et al. (2004) Grading quality of evidence and strength of recommendations. BMJ 328: 1490.
    • 23. Glenton C, Santesso N, Rosenbaum S, Nilsen ES, Rader T, et al. (2010) Presenting the results of Cochrane Systematic Reviews to a consumer audience: a qualitative study. Med Decis Making 30: 566-577.
    • 24. Aude YW, Agatston AS, Lopez-Jimenez F, Lieberman EH, Marie A, et al. (2004) The national cholesterol education program diet vs a diet lower in carbohydrates and higher in protein and monounsaturated fat: a randomized trial. Arch Intern Med 164: 2141-2146.
    • 25. Brinkworth GD, Noakes M, Parker B, Foster P, Clifton PM (2004) Long-term effects of advice to consume a high-protein, low-fat diet, rather than a conventional weight-loss diet, in obese adults with type 2 diabetes: one-year follow-up of a randomised trial. Diabetologia 47: 1677-1686.
    • 26. de Luis DA, Aller R, Izaola O, de la Fuente B, Conde R, et al. (2012) Evaluation of weight loss and adipocytokines levels after two hypocaloric diets with different macronutrient distribution in obese subjects with rs9939609 gene variant. Diabetes Metab Res Rev 28: 663-668.
    • 27. de Luis DA, Sagrado MG, Conde R, Aller R, Izaola O (2009) The effects of two different hypocaloric diets on glucagon-like peptide 1 in obese adults, relation with insulin response after weight loss. J Diabetes Complications 23: 239-243.
    • 28. Farnsworth E, Luscombe ND, Noakes M, Wittert G, Argyiou E, et al. (2003) Effect of a high-protein, energy-restricted diet on body composition, glycemic control, and lipid concentrations in overweight and obese hyperinsulinemic men and women. Am J Clin Nutr 78: 31-39.
    • 29. Frisch S, Zittermann A, Berthold HK, Gotting C, Kuhn J, et al. (2009) A randomized controlled trial on the efficacy of carbohydrate-reduced or fatreduced diets in patients attending a telemedically guided weight loss program. Cardiovasc Diabetol 8: 36.
    • 30. Guldbrand H, Dizdar B, Bunjaku B, Lindstrom T, Bachrach-Lindstrom M, et al. (2012) In type 2 diabetes, randomisation to advice to follow a lowcarbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia 55: 2118- 2127.
    • 31. Keogh JB, Brinkworth GD, Clifton PM (2007) Effects of weight loss on a lowcarbohydrate diet on flow-mediated dilatation, adhesion molecules and adiponectin. British Journal of Nutrition 98: 852-859.
    • 32. Klemsdal TO, Holme I, Nerland H, Pedersen TR, Tonstad S (2010) Effects of a low glycemic load diet versus a low-fat diet in subjects with and without the metabolic syndrome. Nutr Metab Cardiovasc Dis 20: 195-201.
    • 33. Krauss RM, Blanche PJ, Rawlings RS, Fernstrom HS, Williams PT (2006) Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am J Clin Nutr 83: 1025-1031; quiz 1205.
    • 34. Krebs JD, Elley CR, Parry-Strong A, Lunt H, Drury PL, et al. (2012) The Diabetes Excess Weight Loss (DEWL) Trial: a randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia 55: 905-914.
    • 35. Larsen RN, Mann NJ, Maclean E, Shaw JE (2011) The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: a 12 month randomised controlled trial. Diabetologia 54: 731-740.
    • 36. Lasker DA, Evans EM, Layman DK (2008) Moderate carbohydrate, moderate protein weight loss diet reduces cardiovascular disease risk compared to high carbohydrate, low protein diet in obese adults: A randomized clinical trial. Nutr Metab (Lond) 5: 30.
    • 37. Layman DK, Evans EM, Erickson D, Seyler J, Weber J, et al. (2009) A moderate-protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults. J Nutr 139: 514-521.
    • 38. Lim SS, Noakes M, Keogh JB, Clifton PM (2010) Long-term effects of a low carbohydrate, low fat or high unsaturated fat diet compared to a nointervention control. Nutr Metab Cardiovasc Dis 20: 599-607.
    • 39. Luscombe ND, Clifton PM, Noakes M, Farnsworth E, Wittert G (2003) Effect of a high-protein, energy-restricted diet on weight loss and energy expenditure after weight stabilization in hyperinsulinemic subjects. Int J Obes Relat Metab Disord 27: 582-590.
    • 40. Parker B, Noakes M, Luscombe N, Clifton P (2002) Effect of a high-protein, high-monounsaturated fat weight loss diet on glycemic control and lipid levels in type 2 diabetes. Diabetes Care 25: 425-430.
    • 41. Wycherley TP, Brinkworth GD, Clifton PM, Noakes M (2012) Comparison of the effects of 52 weeks weight loss with either a high-protein or highcarbohydrate diet on body composition and cardiometabolic risk factors in overweight and obese males. Nutr Diabetes 2: e40.
    • 42. World Health Organization (1995) Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. Geneva: World Health Organization
    • 43. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, et al. (2011) Quantification of the effect of energy imbalance on bodyweight. Lancet 378: 826-837.
    • 44. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, et al. (2013) 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation.
    • 45. Avenell A, Broom J, Brown TJ, Poobalan A, Aucott L, et al. (2004) Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement. Health Technol Assess 8: iiiiv, 1-182.
    • 46. Douketis JD, Macie C, Thabane L, Williamson DF (2005) Systematic review of long-term weight loss studies in obese adults: clinical significance and applicability to clinical practice. Int J Obes (Lond) 29: 1153-1167.
    • 47. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM (2003) Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 42: 878-884.
    • 48. Brehm BJ, Seeley RJ, Daniels SR, D'Alessio DA (2003) A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab 88: 1617-1623.
    • 49. Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, et al. (2003) A randomized trial of a low-carbohydrate diet for obesity. New England Journal of Medicine 348: 2082-2090.
    • 50. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, et al. (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359: 229-241.
    • 51. Yancy WS, Jr., Olsen MK, Guyton JR, Bakst RP, Westman EC (2004) A lowcarbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med 140: 769-777.
    • 52. Alhassan S, Kim S, Bersamin A, King AC, Gardner CD (2008) Dietary adherence and weight loss success among overweight women: results from the A TO Z weight loss study. Int J Obes (Lond) 32: 985-991.
    • 53. Simons-Morton DG, Obarzanek E, Cutler JA (2006) Obesity researchlimitations of methods, measurements, and medications. JAMA 295: 826-828.
    • 54. Vartiainen E, Laatikainen T, Peltonen M, Juolevi A, Mannisto S, et al. (2010) Thirty-five-year trends in cardiovascular risk factors in Finland. Int J Epidemiol 39: 504-518.
    • 55. Zatonski WA, Willett W (2005) Changes in dietary fat and declining coronary heart disease in Poland: population based study. BMJ 331: 187-188.
    • 56. Mensink RP, Zock PL, Kester AD, Katan MB (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77: 1146-1155.
    • 57. Jakobsen MU, O'Reilly EJ, Heitmann BL, Pereira MA, Balter K, et al. (2009) Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr 89: 1425-1432.
    • 58. Mozaffarian D, Micha R, Wallace S (2010) Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med 7: e1000252.
    • 59. Jakobsen MU, Dethlefsen C, Joensen AM, Stegger J, Tjonneland A, et al. (2010) Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: importance of the glycemic index. Am J Clin Nutr 91: 1764-1768.
    • 60. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, et al. (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366: 1267- 1278.
    • 61. Cohen JC, Boerwinkle E, Mosley TH, Jr., Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354: 1264-1272.
    • 62. Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK, et al. (2012) Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol 60: 2631-2639.
    • 63. Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B (2013) Ultraprocessed products are becoming dominant in the global food system. Obes Rev 14 Suppl 2: 21-28.
    • 64. Moodie R, Stuckler D, Monteiro C, Sheron N, Neal B, et al. (2013) Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultraprocessed food and drink industries. Lancet 381: 670-679.
    • 65. Galani C, Schneider H (2007) Prevention and treatment of obesity with lifestyle interventions: review and meta-analysis. Int J Public Health 52: 348-359.
    • 66. Groeneveld IF, Proper KI, van der Beek AJ, Hildebrandt VH, van Mechelen W (2010) Lifestyle-focused interventions at the workplace to reduce the risk of cardiovascular disease-a systematic review. Scand J Work Environ Health 36: 202-215.
    • 67. Zone Labs (2012) Dr Sears Zone Diet. http://www.zonediet.com/. Zone Labs Inc.
    • 68. Barnett J (2009) The Zone Diet Explained. http://crossfitimpulse.com/thezone-diet-explained-edited. Crossfit Impulse.
    • 69. British Dietetic Association (2013) Weight wise Eating well: Your weight loss plan. http://www.bdaweightwise.com/eating/eating_plan.html. British Dietetic Association.
    • 70. Becker W, Lyhne N, Pedersen AN, Aro A, Fogelholm M, et al. (2004) Nordic Nutrition Recommendations 2004 - integrating nutrition and physical activity. Scandinavian Journal of Nutrition 48: 178-187.
    • 71. Abete I, Parra D, De Morentin BM, Alfredo Martinez J (2009) Effects of two energy-restricted diets differing in the carbohydrate/protein ratio on weight loss and oxidative changes of obese men. International Journal of Food Sciences & Nutrition 60: 1-13.
    • 72. Carter JD, Vasey FB, Valeriano J (2006) The effect of a low-carbohydrate diet on bone turnover. Osteoporos Int 17: 1398-1403.
    • 73. Wang YF, Yancy WS, Jr., Yu D, Champagne C, Appel LJ, et al. (2008) The relationship between dietary protein intake and blood pressure: results from the PREMIER study. J Hum Hypertens 22: 745-754.
    • 74. Nielsen JV, Jonsson E, Nilsson AK (2005) Lasting improvement of hyperglycaemia and bodyweight: low-carbohydrate diet in type 2 diabetes-a brief report. Ups J Med Sci 110: 69-73.
    • 75. Al-Sarraj T, Saadi H, Calle MC, Volek JS, Fernandez ML (2009) Carbohydrate restriction, as a first-line dietary intervention, effectively reduces biomarkers of metabolic syndrome in Emirati adults. Journal of Nutrition 139: 1667-1676.
    • 76. Ashton EL, Pomeroy S, Foster JE, Kaye RS, Nestel PJ, et al. (2000) Diet high in monounsaturated fat does not have a different effect on arterial elasticity than a low-fat, high-carbohydrate diet. Journal of the American Dietetic Association 100: 537-542.
    • 77. Baba NH, Sawaya S, Torbay N, Habbal Z, Azar S, et al. (1999) High protein vs high carbohydrate hypoenergetic diet for the treatment of obese hyperinsulinemic subjects. Int J Obes Relat Metab Disord 23: 1202-1206.
    • 78. Bradley U, Spence M, Courtney CH, McKinley MC, Ennis CN, et al. (2009) Low-fat versus low-carbohydrate weight reduction diets: effects on weight loss, insulin resistance, and cardiovascular risk: a randomized control trial. Diabetes 58: 2741-2748.
    • 79. Buscemi S, Verga S, Tranchina MR, Cottone S, Cerasola G (2009) Effects of hypocaloric very-low-carbohydrate diet vs. Mediterranean diet on endothelial function in obese women*. Eur J Clin Invest 39: 339-347.
    • 80. De Natale C, Annuzzi G, Bozzetto L, Mazzarella R, Costabile G, et al. (2009) Effects of a plant-based high-carbohydrate/high-fiber diet versus highmonounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients. Diabetes Care 32: 2168-2173.
    • 81. Dreon DM, Fernstrom HA, Williams PT, Krauss RM (1999) A very low-fat diet is not associated with improved lipoprotein profiles in men with a predominance of large, low-density lipoproteins. Am J Clin Nutr 69: 411-418.
    • 82. Egert S, Kratz M, Kannenberg F, Fobker M, Wahrburg U (2010) Effects of high-fat and low-fat diets rich in monounsaturated fatty acids on serum lipids, LDL size and indices of lipid peroxidation in healthy non-obese men and women when consumed under controlled conditions. Eur J Nutr 50: 71-79.
    • 83. Gerhard GT, Ahmann A, Meeuws K, McMurry MP, Duell PB, et al. (2004) Effects of a low-fat diet compared with those of a high-monounsaturated fat diet on body weight, plasma lipids and lipoproteins, and glycemic control in type 2 diabetes. Am J Clin Nutr 80: 668-673.
    • 84. Halyburton AK, Brinkworth GD, Wilson CJ, Noakes M, Buckley JD, et al. (2007) Low- and high-carbohydrate weight-loss diets have similar effects on mood but not cognitive performance. Am J Clin Nutr 86: 580-587.
    • 85. Holloway CJ, Cochlin LE, Emmanuel Y, Murray A, Codreanu I, et al. (2011) A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. Am J Clin Nutr 93: 748-755.
    • 86. Hodson L, Harnden KE, Roberts R, Dennis AL, Frayn KN (2010) Does the DASH diet lower blood pressure by altering peripheral vascular function? J Hum Hypertens 24: 312-319.
    • 87. Jenkins DJ, Wong JM, Kendall CW, Esfahani A, Ng VW, et al. (2009) The effect of a plant-based low-carbohydrate (''Eco-Atkins'') diet on body weight and blood lipid concentrations in hyperlipidemic subjects. Arch Intern Med 169: 1046-1054.
    • 88. Jeppesen J, Schaaf P, Jones C, Zhou MY, Chen YD, et al. (1997) Effects of lowfat, high-carbohydrate diets on risk factors for ischemic heart disease in postmenopausal women. Am J Clin Nutr 65: 1027-1033.
    • 89. Johnston CS, Tjonn SL, Swan PD (2004) High-protein, low-fat diets are effective for weight loss and favorably alter biomarkers in healthy adults. Journal of Nutrition 134: 586-591.
    • 90. Johnston CS, Tjonn SL, Swan PD, White A, Hutchins H, et al. (2006) Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets. Am J Clin Nutr 83: 1055-1061.
    • 91. Johnstone AM, Lobley GE, Horgan GW, Bremner DM, Fyfe CL, et al. (2011) Effects of a high-protein, low-carbohydrate v. high-protein, moderatecarbohydrate weight-loss diet on antioxidant status, endothelial markers and plasma indices of the cardiometabolic profile. British Journal of Nutrition 106: 282-291.
    • 92. Kasim-Karakas SE, Almario RU, Cunningham W (2009) Effects of protein versus simple sugar intake on weight loss in polycystic ovary syndrome (according to the National Institutes of Health criteria). Fertil Steril 92: 262- 270.
    • 93. Kleiner RE, Hutchins AM, Johnston CS, Swan PD (2006) Effects of an 8-week high-protein or high-carbohydrate diet in adults with hyperinsulinemia. MedGenMed 8: 39.
    • 94. Krauss RM, Dreon DM (1995) Low-density-lipoprotein subclasses and response to a low-fat diet in healthy men. Am J Clin Nutr 62: 478S-487S.
    • 95. Labayen I, Diez N, Gonzalez A, Parra D, Martinez JA (2003) Effects of protein vs. carbohydrate-rich diets on fuel utilisation in obese women during weight loss. Forum Nutr 56: 168-170.
    • 96. Layman DK, Boileau RA, Erickson DJ, Painter JE, Shiue H, et al. (2003) A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women. Journal of Nutrition 133: 411-417.
    • 97. Lefevre M, Champagne CM, Tulley RT, Rood JC, Most MM (2005) Individual variability in cardiovascular disease risk factor responses to low-fat and low-saturated-fat diets in men: body mass index, adiposity, and insulin resistance predict changes in LDL cholesterol. Am J Clin Nutr 82: 957-963.
    • 98. Mangravite LM, Chiu S, Wojnoonski K, Rawlings RS, Bergeron N, et al. (2011) Changes in atherogenic dyslipidemia induced by carbohydrate restriction in men are dependent on dietary protein source. Journal of Nutrition 141: 2180-2185.
    • 99. Meckling KA, O'Sullivan C, Saari D (2004) Comparison of a low-fat diet to a low-carbohydrate diet on weight loss, body composition, and risk factors for diabetes and cardiovascular disease in free-living, overweight men and women. Journal of Clinical Endocrinology & Metabolism 89: 2717-2723.
    • 100. Miller M, Beach V, Sorkin JD, Mangano C, Dobmeier C, et al. (2009) Comparative effects of three popular diets on lipids, endothelial function, and C-reactive protein during weight maintenance. Journal of the American Dietetic Association 109: 713-717.
    • 101. Papakonstantinou E, Triantafillidou D, Panagiotakos DB, Koutsovasilis A, Saliaris M, et al. (2010) A high-protein low-fat diet is more effective in improving blood pressure and triglycerides in calorie-restricted obese individuals with newly diagnosed type 2 diabetes. European Journal of Clinical Nutrition 64: 595-602.
    • 102. Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS (2004) Effects of a lowglycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA 292: 2482-2490.
    • 103. Petersen M, Taylor MA, Saris WH, Verdich C, Toubro S, et al. (2006) Randomized, multi-center trial of two hypo-energetic diets in obese subjects: high- versus low-fat content. Int J Obes 30: 552-560.
    • 104. Phillips SA, Jurva JW, Syed AQ, Kulinski JP, Pleuss J, et al. (2008) Benefit of low-fat over low-carbohydrate diet on endothelial health in obesity. Hypertension 51: 376-382.
    • 105. Segal-Isaacson CJ, Johnson S, Tomuta V, Cowell B, Stein DT (2004) A randomized trial comparing low-fat and low-carbohydrate diets matched for energy and protein. Obes Res 12: 130S-140S.
    • 106. Sharman MJ, Gomez AL, Kraemer WJ, Volek JS (2004) Very lowcarbohydrate and low-fat diets affect fasting lipids and postprandial lipemia differently in overweight men. Journal of Nutrition 134: 880-885.
    • 107. Stamets K, Taylor DS, Kunselman A, Demers LM, Pelkman CL, et al. (2004) A randomized trial of the effects of two types of short-term hypocaloric diets on weight loss in women with polycystic ovary syndrome. Fertil Steril 81: 630-637.
    • 108. Stoernell CK, Tangney CC, Rockway SW (2008) Short-term changes in lipoprotein subclasses and C-reactive protein levels of hypertriglyceridemic adults on low-carbohydrate and low-fat diets. Nutr Res 28: 443-449.
    • 109. Te Morenga LA, Levers MT, Williams SM, Brown RC, Mann J (2011) Comparison of high protein and high fiber weight-loss diets in women with risk factors for the metabolic syndrome: a randomized trial. Nutrition Journal 10: 40.
    • 110. Torbay N, Hwalla Baba N, Sawaya S, Bajjani R, Habbal Z, et al. (2002) High protein vs high carbohydrate hypoenergetic diet in treatment of obese normoinsulinemic and hyperinsulinemic subjects. Nutrition research (New York, NY) 22: 587-598.
    • 111. Turley ML, Skeaff CM, Mann JI, Cox B (1998) The effect of a low-fat, highcarbohydrate diet on serum high density lipoprotein cholesterol and triglyceride. European Journal of Clinical Nutrition 52: 728-732.
    • 112. Varady KA, Bhutani S, Klempel MC, Phillips SA (2011) Improvements in vascular health by a low-fat diet, but not a high-fat diet, are mediated by changes in adipocyte biology. Nutrition Journal 10: 8.
    • 113. Volek JS, Sharman MJ, Gomez AL, Scheett TP, Kraemer WJ (2003) An isoenergetic very low carbohydrate diet improves serum HDL cholesterol and triacylglycerol concentrations, the total cholesterol to HDL cholesterol ratio and postprandial pipemic responses compared with a low fat diet in normal weight, normolipidemic women. Journal of Nutrition 133: 2756-2761.
    • 114. Keogh JB, Brinkworth GD, Noakes M, Belobrajdic DP, Buckley JD, et al. (2008) Effects of weight loss from a very-low-carbohydrate diet on endothelial function and markers of cardiovascular disease risk in subjects with abdominal obesity. Am J Clin Nutr 87: 567-576.
    • 115. Belobrajdic DP, Frystyk J, Jeyaratnaganthan N, Espelund U, Flyvbjerg A, et al. (2010) Moderate energy restriction-induced weight loss affects circulating IGF levels independent of dietary composition. Eur J Endocrinol 162: 1075-1082.
    • 116. Berglund L, Oliver EH, Fontanez N, Holleran S, Matthews K, et al. (1999) HDL-subpopulation patterns in response to reductions in dietary total and saturated fat intakes in healthy subjects. Am J Clin Nutr 70: 992-1000.
    • 117. Camhi SM, Stefanick ML, Katzmarzyk PT, Young DR (2009) Metabolic syndrome and changes in body fat from a low-fat diet and/or exercise randomized controlled trial. Obesity (Silver Spring) 18: 548-554.
    • 118. Campbell DD, Meckling KA (2012) Effect of the protein:carbohydrate ratio in hypoenergetic diets on metabolic syndrome risk factors in exercising overweight and obese women. Br J Nutr 108: 1658-1671.
    • 119. Carty CL, Kooperberg C, Neuhouser ML, Tinker L, Howard B, et al. (2010) Low-fat dietary pattern and change in body-composition traits in the Women's Health Initiative Dietary Modification Trial. Am J Clin Nutr 93: 516-524.
    • 120. Daly ME, Paisey R, Millward BA, Eccles C, Williams K, et al. (2006) Shortterm effects of severe dietary carbohydrate-restriction advice in Type 2 diabetes-a randomized controlled trial. Diabet Med 23: 15-20.
    • 121. Davis NJ, Tomuta N, Schechter C, Isasi CR, Segal-Isaacson CJ, et al. (2009) Comparative study of the effects of a 1-year dietary intervention of a lowcarbohydrate diet versus a low-fat diet on weight and glycemic control in type 2 diabetes. Diabetes Care 32: 1147-1152.
    • 122. Donnelly JE, Sullivan DK, Smith BK, Jacobsen DJ, Washburn RA, et al. (2008) Alteration of dietary fat intake to prevent weight gain: Jayhawk Observed Eating Trial. Obesity 16: 107-112.
    • 123. Erlinger TP, Miller ER, 3rd, Charleston J, Appel LJ (2003) Inflammation modifies the effects of a reduced-fat low-cholesterol diet on lipids: results from the DASH-sodium trial. Circulation 108: 150-154.
    • 124. Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J, RuizGutierrez V, et al. (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145: 1-11.
    • 125. Hartwich J, Malec MM, Partyka L, Perez-Martinez P, Marin C, et al. (2009) The effect of the plasma n-3/n-6 polyunsaturated fatty acid ratio on the dietary LDL phenotype transformation - insights from the LIPGENE study. Clin Nutr 28: 510-515.
    • 126. Haufe S, Engeli S, Kast P, Bohnke J, Utz W, et al. (2011) Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology 53: 1504-1514.
    • 127. Hoy MK, Winters BL, Chlebowski RT, Papoutsakis C, Shapiro A, et al. (2009) Implementing a low-fat eating plan in the Women's Intervention Nutrition Study. Journal of the American Dietetic Association 109: 688-696.
    • 128. Lindeberg S, Jonsson T, Granfeldt Y, Borgstrand E, Soffman J, et al. (2007) A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia 50: 1795-1807.
    • 129. Paniagua JA, Perez-Martinez P, Gjelstad IM, Tierney AC, Delgado-Lista J, et al. (2011) A low-fat high-carbohydrate diet supplemented with long-chain n-3 PUFA reduces the risk of the metabolic syndrome. Atherosclerosis 218: 443- 450.
    • 130. Pascale RW, Wing RR, Butler BA, Mullen M, Bononi P (1995) Effects of a behavioral weight loss program stressing calorie restriction versus calorie plus fat restriction in obese individuals with NIDDM or a family history of diabetes. Diabetes Care 18: 1241-1248.
    • 131. Shaw DI, Tierney AC, McCarthy S, Upritchard J, Vermunt S, et al. (2008) LIPGENE food-exchange model for alteration of dietary fat quantity and quality in free-living participants from eight European countries. British Journal of Nutrition 101: 750-759.
    • 132. Baron JA, Schori A, Crow B, Carter R, Mann JI (1986) A randomized controlled trial of low carbohydrate and low fat/high fiber diets for weight loss. Am J Public Health 76: 1293-1296.
    • 133. de Lorgeril M, Renaud S, Mamelle N, Salen P, Martin JL, et al. (1994) Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343: 1454-1459.
    • 134. Sheppard L, Kristal AR, Kushi LH (1991) Weight loss in women participating in a randomized trial of low-fat diets. Am J Clin Nutr 54: 821-828.
    • 135. de Luis DA, Aller R, Izaola O, Gonzalez Sagrado M, Bellioo D, et al. (2007) Effects of a low-fat versus a low-carbohydrate diet on adipocytokines in obese adults. Horm Res 67: 296-300.
    • 136. Chen YD, Coulston AM, Zhou MY, Hollenbeck CB, Reaven GM (1995) Why do low-fat high-carbohydrate diets accentuate postprandial lipemia in patients with NIDDM? Diabetes Care 18: 10-16.
    • 137. Flechtner-Mors M, Boehm BO, Wittmann R, Thoma U, Ditschuneit HH (2010) Enhanced weight loss with protein-enriched meal replacements in subjects with the metabolic syndrome. Diabetes Metab Res Rev 26: 393-405.
    • 138. Treyzon L, Chen S, Hong K, Yan E, Carpenter CL, et al. (2008) A controlled trial of protein enrichment of meal replacements for weight reduction with retention of lean body mass. Nutrition Journal 7: 23.
    • 139. Gardner CD, Kiazand A, Alhassan S, Kim S, Stafford RS, et al. (2007) Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA 297: 969-977.
    • 140. Layman DK, Evans E, Baum JI, Seyler J, Erickson DJ, et al. (2005) Dietary Protein and Exercise Have Additive Effects on Body Composition during Weight Loss in Adult Women. The Journal of nutrition 135: 1903-1910.
    • 141. Sebregts EH, Falger PR, Bar FW, Kester AD, Appels A (2003) Cholesterol changes in coronary patients after a short behavior modification program. Int J Behav Med 10: 315-330.
    • 142. Fabricatore AN, Wadden TA, Ebbeling CB, Thomas JG, Stallings VA, et al. (2011) Targeting dietary fat or glycemic load in the treatment of obesity and type 2 diabetes: a randomized controlled trial. Diabetes Res Clin Pract 92: 37- 45.
    • 143. Fito M, Guxens M, Corella D, Saez G, Estruch R, et al. (2007) Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med 167: 1195-1203.
    • 144. Luscombe-Marsh ND, Noakes M, Wittert GA, Keogh JB, Foster P, et al. (2005) Carbohydrate-restricted diets high in either monounsaturated fat or protein are equally effective at promoting fat loss and improving blood lipids. Am J Clin Nutr 81: 762-772.
    • 145. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, et al. (2010) Diets with high or low protein content and glycemic index for weight-loss maintenance. New England Journal of Medicine 363: 2102-2113.
    • 146. Hockaday TD, Hockaday JM, Mann JI, Turner RC (1978) Prospective comparison of modified fat-high-carbohydrate with standard low-carbohydrate dietary advice in the treatment of diabetes: one year follow-up study. Br J Nutr 39: 357-362.
    • 147. Morgan LM, Griffin BA, Millward DJ, DeLooy A, Fox KR, et al. (2009) Comparison of the effects of four commercially available weight-loss programmes on lipid-based cardiovascular risk factors. Public Health Nutrition 12: 799-807.
    • 148. Walker KZ, O'Dea K, Nicholson GC, Muir JG (1995) Dietary composition, body weight, and NIDDM. Comparison of high-fiber, high-carbohydrate, and modified-fat diets. Diabetes Care 18: 401-403.
    • 149. Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ (2005) Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 293: 43-53.
    • 150. Dyson PA, Beatty S, Matthews DR (2007) A low-carbohydrate diet is more effective in reducing body weight than healthy eating in both diabetic and nondiabetic subjects. Diabet Med 24: 1430-1435.
    • 151. Foster GD, Wyatt HR, Hill JO, Makris AP, Rosenbaum DL, et al. (2010) Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann Intern Med 153: 147-157.
    • 152. Fleming RM (2002) The effect of high-, moderate-, and low-fat diets on weight loss and cardiovascular disease risk factors. Prev Cardiol 5: 110-118.
    • 153. Greenberg I, Stampfer MJ, Schwarzfuchs D, Shai I (2009) Adherence and success in long-term weight loss diets: the dietary intervention randomized controlled trial (DIRECT). J Am Coll Nutr 28: 159-168.
    • 154. Iqbal N, Vetter ML, Moore RH, Chittams JL, Dalton-Bakes CV, et al. (2009) Effects of a low-intensity intervention that prescribed a low-carbohydrate vs. a low-fat diet in obese, diabetic participants. Obesity (Silver Spring) 18: 1733- 1738.
    • 155. Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, et al. (2003) A lowcarbohydrate as compared with a low-fat diet in severe obesity. New England Journal of Medicine 348: 2074-2081.
    • 156. Seshadri P, Iqbal N, Stern L, Williams M, Chicano KL, et al. (2004) A randomized study comparing the effects of a low-carbohydrate diet and a conventional diet on lipoprotein subfractions and C-reactive protein levels in patients with severe obesity. American Journal of Medicine 117: 398-405.
    • 157. Seshadri P, Samaha FF, Stern L, Chicano KL, Daily DA, et al. (2005) Free fatty acids, insulin resistance, and corrected qt intervals in morbid obesity: effect of weight loss during 6 months with differing dietary interventions. Endocr Pract 11: 234-239.
    • 158. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, et al. (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. New England Journal of Medicine 359: 229-241.
    • 159. Summer SS, Brehm BJ, Benoit SC, D'Alessio DA (2011) Adiponectin changes in relation to the macronutrient composition of a weight-loss diet. Obesity (Silver Spring) 19: 2198-2204.
    • 160. Aquilani R, Tramarin R, Pedretti RF, Bertolotti G, Sommaruga M, et al. (1999) Despite good compliance, very low fat diet alone does not achieve recommended cholesterol goals in outpatients with coronary heart disease. Eur Heart J 20: 1020-1029.
    • 161. Bowden RG, Lanning BA, Doyle EI, Slonaker B, Johnston HM, et al. (2007) Systemic glucose level changes with a carbohydrate-restricted and higher protein diet combined with exercise. J Am Coll Health 56: 147-152.
    • 162. Brehm BJ, Lattin BL, Summer SS, Boback JA, Gilchrist GM, et al. (2009) Oneyear comparison of a high-monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes. Diabetes Care 32: 215-220.
    • 163. Campbell WW, Tang M (2010) Protein intake, weight loss, and bone mineral density in postmenopausal women. J Gerontol A Biol Sci Med Sci 65: 1115- 1122.
    • 164. Clifton PM, Keogh JB, Noakes M (2008) Long-term effects of a high-protein weight-loss diet. Am J Clin Nutr 87: 23-29.
    • 165. Djuric Z, Lababidi S, Heilbrun LK, Depper JB, Poore KM, et al. (2002) Effect of low-fat and/or low-energy diets on anthropometric measures in participants of the women's diet study. J Am Coll Nutr 21: 38-46.
    • 166. Due A, Larsen TM, Hermansen K, Stender S, Holst JJ, et al. (2008) Comparison of the effects on insulin resistance and glucose tolerance of 6-mo high-monounsaturated-fat, low-fat, and control diets. Am J Clin Nutr 87: 855- 862.
    • 167. Esposito K, Maiorino MI, Ciotola M, Di Palo C, Scognamiglio P, et al. (2009) Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial. Ann Intern Med 151: 306-314.
    • 168. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, et al. (2004) Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292: 1440-1446.
    • 169. Guay V, Lamarche B, Charest A, Tremblay AJ, Couture P (2012) Effect of short-term low- and high-fat diets on low-density lipoprotein particle size in normolipidemic subjects. Metabolism 61: 76-83.
    • 170. Hays NP, Starling RD, Liu X, Sullivan DH, Trappe TA, et al. (2004) Effects of an ad libitum low-fat, high-carbohydrate diet on body weight, body composition, and fat distribution in older men and women: a randomized controlled trial. Arch Intern Med 164: 210-217.
    • 171. Knopp RH, Retzlaff B, Walden C, Fish B, Buck B, et al. (2000) One-year effects of increasingly fat-restricted, carbohydrate-enriched diets on lipoprotein levels in free-living subjects. Proc Soc Exp Biol Med 225: 191-199.
    • 172. Knopp RH, Walden CE, Retzlaff BM, McCann BS, Dowdy AA, et al. (1997) Long-term cholesterol-lowering effects of 4 fat-restricted diets in hypercholesterolemic and combined hyperlipidemic men. The Dietary Alternatives Study. JAMA 278: 1509-1515.
    • 173. Leidy HJ, Carnell NS, Mattes RD, Campbell WW (2007) Higher protein intake preserves lean mass and satiety with weight loss in pre-obese and obese women. Obesity (Silver Spring) 15: 421-429.
    • 174. Louheranta AM, Schwab US, Sarkkinen ES, Voutilainen ET, Ebeling TM, et al. (2000) Insulin sensitivity after a reduced-fat diet and a monoene-enriched diet in subjects with elevated serum cholesterol and triglyceride concentrations. Nutr Metab Cardiovasc Dis 10: 177-187.
    • 175. McManus K, Antinoro L, Sacks F (2001) A randomized controlled trial of a moderate-fat, low-energy diet compared with a low fat, low-energy diet for weight loss in overweight adults. Int J Obes Relat Metab Disord 25: 1503- 1511.
    • 176. Moore C, Gitau R, Goff L, Lewis FJ, Griffin MD, et al. (2009) Successful manipulation of the quality and quantity of fat and carbohydrate consumed by free-living individuals using a food exchange model. Journal of Nutrition 139: 1534-1540.
    • 177. Noakes M, Keogh JB, Foster PR, Clifton PM (2005) Effect of an energyrestricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am J Clin Nutr 81: 1298- 1306.
    • 178. Patterson RE, Hutchinson F (2004) Dietary adherence in the Women's Health Initiative Dietary Modification Trial. Journal of the American Dietetic Association 104: 654-658.
    • 179. Raatz SK, Torkelson CJ, Redmon JB, Reck KP, Kwong CA, et al. (2005) Reduced glycemic index and glycemic load diets do not increase the effects of energy restriction on weight loss and insulin sensitivity in obese men and women. Journal of Nutrition 135: 2387-2391.
    • 180. Rodriguez-Hernandez H, Morales-Amaya UA, Rosales-Valdez R, RiveraHinojosa F, Rodriguez-Moran M, et al. (2009) Adding cognitive behavioural treatment to either low-carbohydrate or low-fat diets: differential short-term effects. British Journal of Nutrition 102: 1847-1853.
    • 181. Simkin-Silverman L, Wing RR, Hansen DH, Klem ML, Pasagian-Macaulay AP, et al. (1995) Prevention of cardiovascular risk factor elevations in healthy premenopausal women. Prev Med 24: 509-517.
    • 182. Skov AR, Toubro S, Ronn B, Holm L, Astrup A (1999) Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int J Obes Relat Metab Disord 23: 528-536.
    • 183. Swinburn BA, Woollard GA, Chang EC, Wilson MR (1999) Effects of reducedfat diets consumed ad libitum on intake of nutrients, particularly antioxidant vitamins. Journal of the American Dietetic Association 99: 1400-1405.
    • 184. Tuttle KR, Shuler LA, Packard DP, Milton JE, Daratha KB, et al. (2008) Comparison of low-fat versus Mediterranean-style dietary intervention after first myocardial infarction (from The Heart Institute of Spokane Diet Intervention and Evaluation Trial). Am J Cardiol 101: 1523-1530.
    • 185. Jebb SA, Lovegrove JA, Griffin BA, Frost GS, Moore CS, et al. (2010) Effect of changing the amount and type of fat and carbohydrate on insulin sensitivity and cardiovascular risk: the RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) trial. Am J Clin Nutr 92: 748-758.
    • 186. Das SK, Gilhooly CH, Golden JK, Pittas AG, Fuss PJ, et al. (2007) Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial. Am J Clin Nutr 85: 1023-1030.
    • 187. Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, Ludwig DS (2007) Effects of a low-glycemic load vs low-fat diet in obese young adults: a randomized trial. JAMA 297: 2092-2102.
    • 188. Noakes M, Foster PR, Keogh JB, James AP, Mamo JC, et al. (2006) Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr Metab (Lond) 3: 7.
    • 189. Tay J, Brinkworth GD, Noakes M, Keogh J, Clifton PM (2008) Metabolic effects of weight loss on a very-low-carbohydrate diet compared with an isocaloric high-carbohydrate diet in abdominally obese subjects. J Am Coll Cardiol 51: 59-67.
    • 190. Al-Sarraj T, Saadi H, Volek JS, Fernandez ML (2009) Carbohydrate restriction favorably alters lipoprotein metabolism in Emirati subjects classified with the metabolic syndrome. Nutr Metab Cardiovasc Dis 20: 720-726.
    • 191. Ben-Avraham S, Harman-Boehm I, Schwarzfuchs D, Shai I (2009) Dietary strategies for patients with type 2 diabetes in the era of multi-approaches; review and results from the Dietary Intervention Randomized Controlled Trial (DIRECT). Diabetes Res Clin Pract 86 Suppl 1: S41-48.
    • 192. Brinkworth GD, Noakes M, Buckley JD, Keogh JB, Clifton PM (2009) Longterm effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 mo. Am J Clin Nutr 90: 23-32.
    • 193. Dyson PA, Beatty S, Matthews DR (2010) An assessment of low-carbohydrate or low-fat diets for weight loss at 2 year's follow-up. Diabet Med 27: 363-364.
    • 194. Estruch R, Martinez-Gonzalez MA, Corella D, Basora-Gallisa J, RuizGutierrez V, et al. (2009) Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J Epidemiol Community Health 63: 582-588.
    • 195. Gulseth HL, Gjelstad IM, Tierney AC, Shaw DI, Helal O, et al. (2010) Dietary fat modifications and blood pressure in subjects with the metabolic syndrome in the LIPGENE dietary intervention study. Br J Nutr 104: 160-163.
    • 196. Haufe S, Utz W, Engeli S, Kast P, Bohnke J, et al. (2012) Left ventricular mass and function with reduced-fat or reduced-carbohydrate hypocaloric diets in overweight and obese subjects. Hypertension 59: 70-75.
    • 197. Howard BV, Curb JD, Eaton CB, Kooperberg C, Ockene J, et al. (2010) Lowfat dietary pattern and lipoprotein risk factors: the Women's Health Initiative Dietary Modification Trial. Am J Clin Nutr 91: 860-874.
    • 198. Howard BV, Manson JE, Stefanick ML, Beresford SA, Frank G, et al. (2006) Low-fat dietary pattern and weight change over 7 years: the Women's Health Initiative Dietary Modification Trial. JAMA 295: 39-49.
    • 199. Howard BV, Van Horn L, Hsia J, Manson JE, Stefanick ML, et al. (2006) Lowfat dietary pattern and risk of cardiovascular disease: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295: 655-666.
    • 200. Hu T, Reynolds K, Yao L, Bunol C, Liu Y, et al. (2013) The Long-term Effect of a Low-Carbohydrate Diet on Endothelial Dysfunction and Insulin Resistance: A Randomized Controlled Trial Circulation 127: AP165.
    • 201. Hu T, Reynolds K, Yao L, Bunol C, Liu Y, et al. (2013) Effect of a lowcarbohydrate diet on adipocytokines and inflammatory markers: A randomized controlled trial. Circulation 127: AP166.
    • 202. Hu T, Reynolds K, Yao L, Bunol C, Liu Y, et al. (2013) The Long-term Effect of a Low-Carbohydrate Diet on Appetite Hormones: A Randomized Controlled Trial Circulation 127: AP167.
    • 203. Iqbal N, Seshadri P, Stern L, Loh J, Kundu S, et al. (2005) Serum resistin is not associated with obesity or insulin resistance in humans. Eur Rev Med Pharmacol Sci 9: 161-165.
    • 204. Jimenez-Gomez Y, Marin C, Peerez-Martinez P, Hartwich J, MalczewskaMalec M, et al. (2010) A low-fat, high-complex carbohydrate diet supplemented with long-chain (n-3) fatty acids alters the postprandial lipoprotein profile in patients with metabolic syndrome. J Nutr 140: 1595-1601.
    • 205. McAuley KA, Smith KJ, Taylor RW, McLay RT, Williams SM, et al. (2006) Long-term effects of popular dietary approaches on weight loss and features of insulin resistance. Int J Obes (Lond) 30: 342-349.
    • 206. Mohler ER, 3rd, Sibley AA, Stein R, Davila-Roman V, Wyatt H, et al. (2013) Endothelial function and weight loss: comparison of low-carbohydrate and lowfat diets. Obesity (Silver Spring) 21: 504-509.
    • 207. Moore SD, King AC, Kiernan M, Gardner CD (2010) Outcome expectations and realizations as predictors of weight regain among dieters. Eat Behav 12: 60-63.
    • 208. Shikany JM, Margolis KL, Pettinger M, Jackson RD, Limacher MC, et al. (2011) Effects of a low-fat dietary intervention on glucose, insulin, and insulin resistance in the Women's Health Initiative (WHI) Dietary Modification trial. Am J Clin Nutr 94: 75-85.
    • 209. Swinburn BA, Metcalf PA, Ley SJ (2001) Long-term (5-year) effects of a reduced-fat diet intervention in individuals with glucose intolerance. Diabetes Care 24: 619-624.
    • 210. Tierney AC, McMonagle J, Shaw DI, Gulseth HL, Helal O, et al. (2011) Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome-LIPGENE: a European randomized dietary intervention study. Int J Obes (Lond) 35: 800-809.
    • 211. Westman EC, Yancy WS, Jr., Olsen MK, Dudley T, Guyton JR (2006) Effect of a low-carbohydrate, ketogenic diet program compared to a low-fat diet on fasting lipoprotein subclasses. Int J Cardiol 110: 212-216.
    • 212. Yancy WS, Jr., Olsen MK, Dudley T, Westman EC (2007) Acid-base analysis of individuals following two weight loss diets. European Journal of Clinical Nutrition 61: 1416-1422.
    • 213. McClain AD, Otten JJ, Hekler EB, Gardner CD (2013) Adherence to a low-fat vs. low-carbohydrate diet differs by insulin resistance status. Diabetes Obes Metab 15: 87-90.
    • 214. Bazzano LA, Reynolds K, Hu T, Yao L, Bunol C, et al. (2012) Effect of a lowcarbohydrate diet on weight and cardiovascular risk factors: A randomized controlled trial. Circulation 125: AP306.
    • 215. Due A, Toubro S, Skov AR, Astrup A (2004) Effect of normal-fat diets, either medium or high in protein, on body weight in overweight subjects: a randomised 1-year trial. Int J Obes Relat Metab Disord 28: 1283-1290.
    • 216. McAuley KA, Hopkins CM, Smith KJ, McLay RT, Williams SM, et al. (2005) Comparison of high-fat and high-protein diets with a high-carbohydrate diet in insulin-resistant obese women. Diabetologia 48: 8-16.
    • 217. Sloth B, Due A, Larsen TM, Holst JJ, Heding A, et al. (2009) The effect of a high-MUFA, low-glycaemic index diet and a low-fat diet on appetite and glucose metabolism during a 6-month weight maintenance period. British Journal of Nutrition 101: 1846-1858.
    • 218. Volek JS, Ballard KD, Silvestre R, Judelson DA, Quann EE, et al. (2009) Effects of dietary carbohydrate restriction versus low-fat diet on flow-mediated dilation. Metabolism 58: 1769-1777.
    • 219. Wolever TM, Mehling C, Chiasson JL, Josse RG, Leiter LA, et al. (2008) Low glycaemic index diet and disposition index in type 2 diabetes (the Canadian trial of carbohydrates in diabetes): a randomised controlled trial. Diabetologia 51: 1607-1615.
    • 220. Delbridge EA, Prendergast LA, Pritchard JE, Proietto J (2009) One-year weight maintenance after significant weight loss in healthy overweight and obese subjects: does diet composition matter? Am J Clin Nutr 90: 1203-1214.
    • 221. Kasim SE, Martino S, Kim PN, Khilnani S, Boomer A, et al. (1993) Dietary and anthropometric determinants of plasma lipoproteins during a long-term low-fat diet in healthy women. Am J Clin Nutr 57: 146-153.
    • 222. Elhayany A, Lustman A, Abel R, Attal-Singer J, Vinker S (2010) A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: a 1- year prospective randomized intervention study. Diabetes Obes Metab 12: 204-209.
    • 223. McLaughlin T, Carter S, Lamendola C, Abbasi F, Schaaf P, et al. (2007) Clinical efficacy of two hypocaloric diets that vary in overweight patients with type 2 diabetes: comparison of moderate fat versus carbohydrate reductions. Diabetes Care 30: 1877-1879.
    • 224. Mueller C, Masri B, Hogg J, Mastrogiacomo M, Chiu YL (2010) Carbohydrate- vs fat-controlled diet effect on weight loss and coronary artery disease risk: a pilot feeding study. Nutrition in Clinical Practice 25: 542-547.
    • 225. Soenen S, Bonomi AG, Lemmens SG, Scholte J, Thijssen MA, et al. (2012) Relatively high-protein or 'low-carb' energy-restricted diets for body weight loss and body weight maintenance? Physiol Behav 107: 374-380.
    • 226. Wycherley TP, Brinkworth GD, Keogh JB, Noakes M, Buckley JD, et al. (2009) Long-term effects of weight loss with a very low carbohydrate and low fat diet on vascular function in overweight and obese patients. J Intern Med 267: 452- 461.
    • 227. Wycherley TP, Noakes M, Clifton PM, Cleanthous X, Keogh JB, et al. (2010) A high-protein diet with resistance exercise training improves weight loss and body composition in overweight and obese patients with type 2 diabetes. Diabetes Care 33: 969-976.
    • 228. Evangelista LS, Heber D, Li Z, Bowerman S, Hamilton MA, et al. (2009) Reduced body weight and adiposity with a high-protein diet improves functional status, lipid profiles, glycemic control, and quality of life in patients with heart failure: a feasibility study. J Cardiovasc Nurs 24: 207-215.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    73
    73%
    73
    73%
    73
    73%
    73
    73%
    73
    73%
    73
    73%
    73
    73%
    73
    73%
    73
    73%
    73
    73%
    73
    73%
    71
    71%
    73
    73%
    73
    73%
    73
    73%
    69
    69%
  • No similar publications.

Share - Bookmark

Cite this article