LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hao, L.; Savalani, M.M.; Zhang, Y.; Tanner, K.E.; Harris, R.A. (2006)
Publisher: Professional Engineering Publishing
Languages: English
Types: Article
Subjects: TJ, T1, R1

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture
Selective laser sintering (SLS) has been investigated for the production of bioactive implants and tissue scaffolds using composites of high-density polyethylene (HDPE) reinforced with hydroxyapatite (HA) with the aim of achieving the rapid manufacturing of customized implants. Single-layer and multilayer block specimens made of HA-HDPE composites with 30 and 40 vol % HA were sintered successfully using a CO2 laser sintering system. Laser power and scanning speed had a significant effect on the sintering behaviour. The degree of particle fusion and porosity were influenced by the laser processing parameters, hence control can be attained by varying these parameters. Moreover, the SLS processing allowed exposure of HA particles on the surface of the composites and thereby should provide bioactive products. Pores existed in the SLS-fabricated composite parts and at certain processing parameters a significant fraction of the pores were within the optimal sizes for tissue regeneration. The results indicate that the SLS technique has the potential not only to fabricate HA-HDPE composite products but also to produce appropriate features for their application as bioactive implants and tissue scaffolds.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Hing, K. A., Best, S. M., Tanner, K. E., Bonfield, W. and Revell, P. A. Biomechanical assessment of bone ingrowth in porous hydroxyapatite. J. Mater. Sci. Mater. Med., 1997, 8, 731-736.
    • 2. Bonfield, W., Grynpas, M. D., Tully, A. E., Bowman, J. and Abram, J. Hydroxyapatite Reinforced Polyethylene - a Mechanically Compatible Implant Material for BoneReplacement. Biomaterials, 1981, 2, 185-186.
    • 3. Bonfield, W., Doyle, C. and Tanner, K. E. In vivo evaluation of hydroxyapatite reinforced polyethylene composites. Biological and Biomechanical Performance of Biomaterials, Proceedings of the Fifth European Conference on Biomaterials, Paris, France, 1986, pp.153-158.
    • 4. Tanner, K. E., Downes, R. N. and Bonfield, W. Clinical Applications of Hydroxyapatite Reinforced Materials. Brit. Ceram. Trans, 1994, 93, 104-107.
    • 5. Eniwumide, J. O., Joseph, R. and Tanner, K. E. Effect of particle morphology and polyethylene molecular weight on the fracture toughness of hydroxyapatite reinforced polyethylene composite. J. Mater. Sci.Mater. Med. 2004, 15, 1147-1152.
    • 6. Mercuri, L. G., Wolford, L. M., Sanders, B., White, D., Hurder, A. and Henderson, W. Custom CAD/CAM total emporomandibular joint reconstruction system: preliminary multicenter report. J. Oral Maxillofacial Surgery, 1995, 53, 106-115.
    • 7. Berry, E., Brown, J. M., Connell, M., Craven, C. M., Efford, N. D., Radjenovic, A. and Smith, M. A. Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Medical Engineering & Physics, 1997, 19, 90-96.
    • 8. Rimell, J. T. and Marquis, P. M. Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J. Biomed. Mater. Res. 2000, 53, 414-420.
    • 9. Das, S., Hollister, S. J., Flanagan, C., Adewunmi, A., Bark, K., Chen, C., Ramaswamy, K., Rose, D. and Widjaja, E. Computational design, freeform fabrication and testing of Nylon-6 tissue engineering scaffolds. Rapid Prototyping Technologies, Dec 3-5 2002, Boston, MA, United States, 2003, pp.205-210.
    • 10. Williams, J. M., Adewunmi, A., Schek, R. M., Flanagan, C. L., Krebsbach, P. H., Feinberg, S. E., Hollister, S. J. and Das, S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 2005, 26, 4817-4827.
    • 11. Lee, G., Barlow, J. W., Fox, W. C. and Aufdermorte, T. B. Biocompatibility of SLSformed calcium phosphate implants. Proceedings of Solid Freeform Fabrication Symposium, Austin, TX, 1996, pp.15-22.
    • 12. Vail, N. K., Swain, L. D., Fox, W. C., Aufdlemorte, T. B., Lee, G. and Barlow, J. W. Materials for biomedical applications. Materials & Design, 1999, 20, 123-132.
    • 13. Tan, K. H., Chua, C. K., Leong, K. F., Cheah, C. M., Cheang, P., Abu Bakar, M. S. and Cha, S. W. Scaffold development using selective laser sintering of
    • 14. Chua, C. K., Leong, K. F., Tan, K. H., Wiria, F. E. and Cheah, C. M. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J. Mater. Sci.: Mater. Med., 2004, 15, 1113-1121.
    • Zhang, Y. and Tanner, K. E. Impact behaviour of hydroxyapatite reinforced polyethylene composites. J. Mater. Sci.: Mater. in Med., 2003, 14, 63-68.
    • 16. Wang, M., Porter, D. and Bonfield, W. Processing, characterization, and evaluation of hydroxyapatite reinforced polyethylene composites. Brit. Ceram. Trans., 1994, 93, 91-95. Williams, J. D. and Dechard, C. R. Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyping Journal, 1998, 4, 90-100.
    • 18. Leong, K. F., Phua, K. K. S., Chua, C. K., Du, Z. H. and Teo, K. O. M. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc. Inst. Mech. Eng. H: J. Engineering in Medicine, 2001, 215, 191-201. Kasemo, B. and Lausmaa, J. Surface science aspects on inorganic biomaterials.
    • Critical Review of Biocompatibility, 1986, 2, 335-380.
    • 20. Di Silvio, L., Dalby, M. J. and Bonfield, W. Osteoblast behaviour on HA/PE composite surfaces with different HA volumes. Biomaterials, 2002, 23, 101-107.
    • 21. Vacanti, J. P., Morse, M. A., Saltzman, W. M., Domb, A. J., Perez-Atayde, A. and Langer, R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J. Pediatr. Surg., 1988, 23, 3-9. Mikos, A. G., Sarakinos, G., Lyman, M. D., Ingber, D. E., Vacanti, J. P. and Langer, R. Prevascularization of porous biodegradable polymers. Biotechnology and Bioengineering, 1993, 42, 716-723.
    • 23. Boyan, B. D., Hummert, T. W., Dean, D. D. and Schwartz, Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 1996, 17, 137-146.
    • 100 µ m 100 µ m
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article