LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Amsel, Aaron J.; Hertog, Thomas; Hollands, Stefan; Marolf, Donald (2007)
Publisher: American Physical Society
Languages: English
Types: Preprint
Subjects: QA, High Energy Physics - Theory

Classified by OpenAIRE into

arxiv: General Relativity and Quantum Cosmology
We investigate the stability of asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound. The boundary conditions in these ``designer gravity'' theories are defined in terms of an arbitrary function W. Previous work had suggested that the energy in designer gravity is bounded below if i) W has a global minimum and ii) the scalar potential admits a superpotential P. More recently, however, certain solutions were found (numerically) to violate the proposed energy bound. We resolve the discrepancy by observing that a given scalar potential can admit two possible branches of the corresponding superpotential, P_{\pm}. When there is a P_- branch, we rigorously prove a lower bound on the energy; the P_+ branch alone is not sufficient. Our numerical investigations i) confirm this picture, ii) confirm other critical aspects of the (complicated) proofs, and iii) suggest that the existence of P_- may in fact be necessary (as well as sufficient) for the energy of a designer gravity theory to be bounded below.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1! j^ k^ j^ k^ ; 4 i
    • [1] P. Breitenlohner and D. Z. Freedman, Ann. Phys. (N.Y.) 144, 249 (1982); Phys. Lett. B 115, 197 (1982).
    • [2] M. Henneaux, C. Martinez, R. Troncoso, and J. Zanelli, Phys. Rev. D 65, 104007 (2002).
    • [3] M. Henneaux, C. Martinez, R. Troncoso, and J. Zanelli, Phys. Rev. D 70, 044034 (2004).
    • [4] T. Hertog and K. Maeda, J. High Energy Phys. 07 (2004) 051.
    • [5] T. Hertog and G. T. Horowitz, Phys. Rev. Lett. 94, 221301 (2005).
    • [6] T. Hertog and S. Hollands, Classical Quantum Gravity 22, 5323 (2005).
    • [7] M. Henneaux, C. Martinez, R. Troncoso, and J. Zanelli, hep-th/0603185.
    • [8] A. J. Amsel and D. Marolf, Phys. Rev. D 74, 064006 (2006).
    • [9] S. Hollands and D. Marolf, gr-qc/0611044.
    • [10] T. Hertog and K. Maeda, Phys. Rev. D 71, 024001 (2005).
    • [11] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
    • [12] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Phys. Rep. 323, 183 (2000).
    • [13] E. Witten, hep-th/0112258.
    • [14] M. Berkooz, A. Sever, and A. Shomer, J. High Energy Phys. 05 (2002) 034.
    • [15] T. Hertog, Classical Quantum Gravity 24, 141 (2007).
    • [16] M. Berg and H. Samtleben, J. High Energy Phys. 12 (2002) 070.
    • [17] D. Z. Freedman, C. Nunez, M. Schnabl, and K. Skenderis, Phys. Rev. D 69, 104027 (2004).
    • [18] A. Celi, A. Ceresole, G. Dall'Agata, A. Van Proeyen, and M. Zagermann, Phys. Rev. D 71, 045009 (2005).
    • [19] M. Zagermann, Phys. Rev. D 71, 125007 (2005).
    • [20] K. Skenderis and P. K. Townsend, Phys. Rev. Lett. 96, 191301 (2006).
    • [21] I. Papadimitriou, hep-th/0606038.
    • [22] K. Skenderis and P. K. Townsend, Phys. Rev. D 74, 125008 (2006).
    • [23] K. Skenderis and P. K. Townsend, hep-th/0610253.
    • [24] S. Hollands, A. Ishibashi, and D. Marolf, Classical Quantum Gravity 22, 2881 (2005).
    • [25] E. Witten, Commun. Math. Phys. 80, 381 (1981).
    • [26] W. Boucher, Nucl. Phys. B242, 282 (1984).
    • [27] G. W. Gibbons, C. M. Hull, and N. P. Warner, Nucl. Phys. B218, 173 (1983).
    • [28] P. K. Townsend, Phys. Lett. B 148, 55 (1984).
    • [29] S. Davis, Phys. Lett. B 166, 127 (1986).
    • [30] J. Nester Phys. Lett. A 83, 241 (1981).
    • [31] J. Lee and R. M. Wald, J. Math. Phys. (N.Y.) 31, 725 (1990).
    • [32] V. Iyer and R. M. Wald, Phys. Rev. D 50, 846 (1994).
    • [33] R. M. Wald and A. Zoupas, Phys. Rev. D 61, 084027 (2000).
    • [34] M. Heusler and N. Straumann, Classical Quantum Gravity 9, 2177 (1992); M. Heusler, J. Math. Phys. (N.Y.) 33, 3497 (1992).
    • [35] T. Hertog, Phys. Rev. D 74, 084008 (2006).
    • [36] T. Hertog and G. T. Horowitz, J. High Energy Phys. 07 (2004) 073.
    • [37] D. Sudarsky and R. M. Wald, Phys. Rev. D 46, 1453 (1992).
    • [38] R. Mazzeo, Commun. Partial Differ. Equ. 16, 1615 (10) (1991); J. Diff. Geom. 28, 309 (1988).
    • [39] R. Camporesi and A. Higuchi, J. Geom. Phys. 20, 1 (1996).
    • [40] M. Henneaux and C. Teitelboim, Commun. Math. Phys. 98, 391 (1985).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article