Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Evans-Freeman, J. H.; Vernon-Parry, K. (2005)
Languages: English
Types: Article

A common technique for introducing rare earth atoms into Si and related materials for photonic applications is ion implantation. It is compatible with standard Si processing, and also allows high, non-equilibrium concentrations of rare earths to be introduced. However, the high energies often employed mean that there are collision cascades and potentially severe end-of-range damage. This paper reports on studies of this damage, and the competition it may present to the optical activity of the rare earths. Er-, Si, and Yb-implanted Si samples have been investigated, before and after anneals designed to restore the sample crystallinity. The electrical activity of\ud defects in as-implanted Er, Si, and Yb doped Si has been studied by Deep Level Transient Spectroscopy (DTLS) and the related, high resolution technique, Laplace DLTS (LDLTS), as a function of annealing. Er-implanted Si, regrown by solid phase epitaxy at 600degrees C and then subject to a rapid thermal anneal, has also been studied by time-resolved photoluminescence (PL). The LDLTS studies reveal that there are clear differences in the defect population as a function of depth from the surface, and this is attributed to different defects in the vacancy-rich and interstitial-rich regions. Defects in the interstitial-rich region have electrical characteristics typical of small extended defects, and these may provide the precursors for larger structural defects in annealed layers. The time-resolved PL of the annealed layers, in combination with electron microscopy, shows that the Er emission at 1.54microns contains a fast component attributed to non-radiative recombination at deep states due to small dislocations. It is concluded that there can be measurable competition to the radiative efficiency in rare-earth implanted Si that is due to the implantation and is not specific to Er.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] P. G. Kik and A. Polman, in L. Pavesi et al (Eds), Towards the First Silicon Laser, Kluwer Academic Publishers, 2003, p.383
    • [2] C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, and D. E. Hole, Appl. Phys. Lett., 75 (1999) 2011
    • [3] G. Franzo, V. Vinciguerra, and F. Priolo, Appl. Phys. A, 69 (1999) 3
    • [4] V. Touboltsev and P. Jalkanen, J. Appl. Phys., 97 (2005) 013526
    • [5] N.E.B Cowern, B. Colombeau, J. Benson, A. J. Smith, W. Lerch, S. Paul, T. Graf, F. Cristiano, X. Hebras, D. Bolze, Appl. Phys. Lett., 86 (2005) 101905
    • [6] M. Benzohra, F. Olivie, M. Idrissi-Benzohra, K. Ketata, and M. Ketata, Nucl. Instr. Meth. Phys. B, 187 (2002) 201
    • [7] Yu. Shreter, J.H. Evans, B. Hamilton, A. R. Peaker, C. Hill, D. R. Boys, C. D. Meekison and G. R. Booker, Appl. Surf. Sci., 63 (1993) 227
    • [8] N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. A. Huizing, J. G. M. van Berkum, F. Cristiano, A. Claverie, and M. Jaraiz, Phys. Rev. Lett., 82 (1999) 4460
    • [9] J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, YH Xie, J. M. Poate and L. C. Kimmerling J. Appl. Phys., 70 (1991) 2672
    • [10] S. Coffa, G. Franzò, F. Priolo, A. Polman and R. Serna, Phys. Rev., B 49 (1994) 16313
    • [11] S. Fukatsu, Y. Mera, M. Inoue, K. Maeda, H. Akiyama, and H. Sakaki, Appl. Phys. Lett., 68, (1996) 1889
    • [12] L. Dobaczewski, P. Kaczor, I.D. Hawkins and A.R. Peaker, J. Appl. Phys., 76 (1994) 194
    • [13] F. Priolo, G. Franzò, S. Coffa, and A. Carnera, Phys. Rev. B, 57 (1998) 4443
    • [14] N. A. Sobolev, O. B. Gusev, E. I. Shek, V. I. Vdovin, T. G. Yugova, and A. M. Emel'yanov, Appl. Phys. Lett., 72 (1998) 3326
    • [15] K. H. Yang. J. Electrochem. Soc. 131 (1984) 1140
    • [16] P. Pellegrino, P. Leveque, J. Wong-Leung, C. Jagadish and B. G. Svensson, Appl. Phys. Lett. 78, 3442 (2001)
    • [17] G.D. Watkins and J.W. Corbett, Phys. Rev. 138, (1965) A543
    • [18] M.T Asom, J.L. Benton, R. Sauer, and L.C. Kimerling, Appl. Phys. Lett. 51, (1987) 256
    • [20] D.V. Lang, J. Appl. Phys., 45, (1974) 3023
    • [21] N. Abdelgader and J. H. Evans-Freeman, J. Appl. Phys., 93 (2003) 5118
    • [22] P. R. Wilshaw and G. R. Booker, in Proceedings of the Royal Microscopical Society Conference, Eds. A. G. Cullis and D. B. Holt, Inst. Phys Conf Ser. 76 (1985) 329
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article