Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Parsons, BJ; Sibanda, S; Heyes, DJ; Paterson, AW (2013)
Languages: English
Types: Article
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Toole, B. P. Hyaluronan and its binding proteins, Curr. Opin. Cell Biol.2: 839-844; 1990.
    • 2. Milner, C. M., Day, A. J. TSG-6: a multifunctional protein associated with inflammation . J Cell Sci.116: 1863-1873; 2003.
    • 3. Laurent, T. C., Laurent, U. B., Fraser, J. R. The structure and function of hyaluronan: An overview. Immunol. Cell Biol. 74: A1-7; 1996.
    • 4. Hardingham, T. E., Muir, H. The specific interaction of hyaluronic acid with cartilage proteoglycans. Biochim. Biophys. Acta 279: 401-405; 1972 5.Camenisch, T. D., Spicer, A. P., Brehm-Gibson, T., Biesterfeldt, J., Augustine, M. L., Calabro, A., Jr., Kubalak, S., Klewer, S. E., McDonald, J. A. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest. 106: 349-360; 2000.
    • 6. Laurent, T. C, Fraser, J. R. Hyaluronan. FASEB J. 6: 2397-2404; 1992
    • 7. Toole, B. P. Developmental role of hyaluronate.. Connect. Tissue Res. 10: 93-100; 1982
    • 8. Thorne, R. F., Legg, J. W., Isacke, C. M. The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J. Cell. Sci. 117: 373-380; 2004.
    • 9. Misra, S.Obeid, L.M., Hannun, Y.A., Minamisawa, S., Berger, F.G., Markwald, R.R., Toole, B.P., Ghatak, S. Hyaluronan constitutively regulates activation of COX-2- mediated cell survival activity in intestinal epithelial and colon carcinoma cells. J. Biol. Chem. 283:14335-14344; 2008.
    • 10. Toole, B. P., Slomiany, M. G. Hyaluronan : a constitutive regulator of chemoresistance and malignancy in cancer cells. Semin. Cancer Biol. 18: 244-250; 2008.
    • 11. Turley, E. A., Noble, P. W., Bourguignon, L. Y. Signaling properties of hyaluronan receptors. J. Biol. Chem. 277: 4589-4592; 2002.
    • 12. Stern, R; Asari, A.A; Sugahara, K.N. Hyaluronan fragments: an information-rich system, Eur. J. Cell Biol. 85: 699-715, 2006.
    • 13. Parsons, B. J. Chemical aspects of free radical reactions in connective tissue. In RiceEvans, C.A., Burdon, R.H. (Eds.) , Free radical damage and its control, Elsevier, Amsterdam, pp 281-300; 1994
    • 16. Al-Assaf, S.; Navaratnam, S.; Parsons, B.J.; Phillips, G.O. Chain scission of hyaluronan by carbonate and dichloride radical anions : Potential reactive oxidative species in inflammation ? , Free Radic. Biol. Med. 40: 2018-2027; 2006.
    • 17. Kennett, E.C. ; Davies, M.J. Degradation of matrix glycosaminoglycans by peroxynitrite/peroxynitrous acid : evidence for a hydroxyl radical-like mechanism, Free Radic. Biol. Med. 42: 1278-1289: 2007.
    • 18. Kennett, E.C.; Davies, M.J. Glycosaminoglycans are fragmented by hydroxyl, carbonate and nitrogen dioxide in a site-specific manner: implications for peroxynitritemediated damage at sites of inflammation, Free Radic. Biol. Med. 47: 389-400; 2009.
    • 19. Rees, M.D.; Hawkins, C.L.; Davies, M.D. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates and related N-acetyl glycosamines: Evidence for chloramide intermediates, free radical transfer reactions and site-specific fragmentation, J. Am. Chem. Soc. 125: 13719-13733; 2003.
    • 20. Rees, M.D.; Hawkins, C.L.; Davies, M.D. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates, Biochem. J. 381: 175-184; 2004.
    • 21 Thomas, E.L., Grisham, M.B., Jefferson, M.M. Preparation and characterization of chloramines, Methods in Enzymology,132, 569-585;1986.
    • 22. Rees, M.D., Pattison, D.I., Davies, M.D. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine dependent fragmentation, Biochem. J. 391: 125-134; 2005.
    • 23. Johnson, H.D., Cooper, W.J., Mezyk, S.P., Bartels, D.M. Free radical reactions of monochloramine and hydroxylamine in aqueous solution, Radiat. Phys. Chem. 65: 317-326, 2002
    • 24. Poskrebyshev, G.A., Huie, R.E., Neta, P. Radiolytic reactions of monochloramine in aqueous solutions, J. Phys. Chem. 107 : 7423-7428, 2003.
    • 25. Pattison, D.I., O` Reilly, R.J., Skaff, O., Radom, L., Anderson, R.F., Davies, M.J. One-electron reduction of N-chlorinated and N-brominated species is a source of radicals and bromine atom formation Chem. Res. Toxicol. 24: 371-382, 2011 26.Pattison, D.I., Davies, M.J., Asmus, K.-D Absolute rate constants for the formation of nitrogen-centred radicals from chloramines and their reactions with antioxidants, J. Chem. Soc. Perkin Trans. 2 1461-1467, 2002.
    • 27. Hawkins, C.L., Rees, M.D. , Davies, M.J. Superoxide radicals can act synergistically with hyochlorite to induce damage to proteins, FEBS Letters 510: 41-44, 2002
    • 28. Heckel, V.E., Henglein, A., Beck.G. Pulsradiolytische untersuchung des radikalanions SO4.- Ber. Bunsenges. Phys. Chem. 70: 149-154, 1966.
    • 29. Dogliotti, L., Hayon, E. Flash photolysis of peroxidisulfate ions in aqueous solutions. The sulfate and ozonide radical anions J. Phys. Chem. 71 : 2511-2516, 1967.
    • 30. Tang, J., Thorn, R.P., Mauldin, R.L., Wine, P.H. Kinetics and spectroscopy of the SO4.- radical in aqueous solution, J. Photochem. Photobiol. A: Chemistry 44: 243-258, 1988.
    • 31. Hayon, E., McGarvey, J.J. Flash photolysis in the vacuum ultraviolet region of SO42-, CO32- and OH- ions in aqueous solution J. Phys. Chem. 71: 1472-1477, 1967.
    • 32. Chawla, O.P., Fessenden, R.W. Electron spin resonance and pulse radiolysis studies of some reactions of SO4.- J. Phys. Chem. 79: 2693-2700, 1975.
    • 33. McElroy, W.J. Laser flash photolysis study of the reaction of SO4.- with Cl- and the subsequent decay of Cl2.- in aqueous solutions J. Phys. Chem. 94: 2435-2441, 1990.
    • 34. Jiang, P.-Y., Katsumura, Y., Nagaishi, R., Domae, M., Ishikawa, K., Ishigura, K. Pulse radiolysis study of concentrated sulfuric acid solutions. Formation, mechanism and reactivity of sulfate radical J. Chem. Soc. Faraday Trans. 88: 1653-1658, 1992.
    • 35. McElroy, W.J., Waygood, S.J., Kinetics of the reaction of the SO4.-, S2O82-, H2O and Fe2+ J. Chem. Soc. Faraday Trans. 86: 2557-2564, 1990.
    • 36. Zao, Zh., Katsumura, Y., Ueda, K., Ishigawa, K. Laser flash photolysis study of the reactions of sulfate radical and nitrate radical with chlorate ion in aqueous solution: Formation and redox potential of ClO3 radical. J. Chem. Soc. Faraday Trans. 93: 533- 533, 1997.
    • 37. Ivanov, K.L., Glebov, E.M., Plyusin, V.F., Ivanov, Yu. V. Grivin, V.P. Bazhin, N.M. Laser flash photolysis of sodium persulfate in aqueous solution with additions of dimethylformamide J. Photochem. Photobiol. A: Chemistry 133: 99-104, 2000.
    • 38. Redpath, J.L., Willson, R.L. Chain reactions and radiosensitisation: model enzyme studies Int. J. Radiat. Biol. Stud. Phys. Chem. Me.27: 389-398, 1975 .
    • 40. Adams, G.E., Willson, R.L. Pulse radiolysis studies on the oxidation of organic radicals in aqueous solution Trans. Faraday Soc. 65: 2981-2987, 1969.
    • 41. Bielski, B.H.J., Cabelli, D.E., Arudi, R.L. Reactivity of HO2./O2.- radicals in aqueous solution J. Phys. Chem. Ref. Data 14: 1041-1100, 1985.
    • 42. Aruoma, O.I., Halliwell, B., Hoey, B.M., Butler, J. The antioxidant action of taurine, hypotaurine and their metabolic precursors Biochem. J. 256: 251-255, 1988.
    • 43. Schwarz, H.A., Creutz, C., Sutin, N. Cobalt(I) polypyridine complexes. Redox and substitutional kinetics and thermodynamics in the aqueous 2,2`-bipyridine and 4,4`- dimethyl-2,2`bipyridine series studied by the pulse radiolysis technique Inorg. Chem. 24: 433-439, 1985
    • 44. Van Gelden, B.F., Slater, F.C. The extinction coefficient of cytochrome c Biochim. Biophys. Acta 58: 593-595, 1962.
    • 45. Butler, J., Koppenol, W.H., Margoliash, E. Kinetics and mechanism of the reduction of ferriccytochrome c by the superoxide anion J. Biol. Chem. 257: 10747-10750, 1982.
    • 46. Figueroa, N., Nagy, B., . Charkrabarti, B. Cu2+-hyaluronic acid complex: Spectrophotometric detection Biochem. Biophys. Res. ComĂșn. 74, 460-465, 1977.
    • 47. Rees, M.D., Davies, M.J. Heparan sulphate degradation via reductive homolysis of its N-chloro derivatives J. Am. Chem. Soc. 128: 3085-3097, 2006.
    • 48. Neta, P. Redox properties of free radicals J. Chem. Educ. 58: 110-113, 1981.
    • 49. Hayon, E., Ibata, T., Lichtin, N.N. Simic, M. Site of attack of hydroxyl radical son amides in aqueous solution J. Am. Chem. Soc. 92: 3898-3903,1070.
    • 50. Ilan, Y., Shinar, R., Stein, G., H/2H isotope effect on redox reactions of cytochrome c , Biochim. Biophys. Acta 461, 15-24, 1977.
    • 51 Heinecke, J. W. (1999) Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. J. Lab. Clin. Med. 133, 321-325
    • 52 van Golen, R.F., van Gulik, T.M., Heger, M. (2012) Mechanistic overview of reactive species-induced degradation of the endotelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic. Biol. Med. 52, 1382-1402
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article