LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mendecki, L; Callan, N; Ahern, M; Schazmann, B; Radu, A (2016)
Publisher: MDPI
Journal: Sensors
Languages: English
Types: Article
Subjects: selectivity, QD, TP1-1185, potentiometric sensors, ion-exchange membrane, Chemical technology, ionic liquids, Article
The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials –trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Coll, C.; Labrador, R.H.; Mañez, R.M.; Soto, J.; Sancenón, F.; Seguí, M.-J.; Sanchez, E. Ionic liquids promote selective responses towards the highly hydrophilic anion sulfate in PVC membrane ion-selective electrodes. Chem. Commun. 2005, 3033-3035. [CrossRef] [PubMed]
    • 2. Hofmeister, F. Zur lehre von der wirkung der salze. Arch. Exp. Pathol. Pharmakol. 1888, 25, 1-30. (In German) [CrossRef]
    • 3. Chatterjee, S.; Bryan, S.A.; Seliskar, C.J.; Heineman, W.R. Three-component spectroelectrochemical sensor module for the detection of pertechnetate (TcO4 ). Rev. Anal. Chem. 2013, 32, 209-224. [CrossRef]
    • 4. Schroll, C.A.; Chatterjee, S.; Heineman, W.R.; Bryan, S.A. Semi-infinite linear diffusion spectroelectrochemistry on an aqueous micro-drop. Anal. Chem. 2011, 83, 4214-4219. [CrossRef] [PubMed]
    • 5. Morris, L.K.; Seliskar, C.J.; Bryan, S.A.; Heineman, W.R.; Burgess, D.; Owen, G.; Rana, H.; Zamboni, R.; Kajzar, F.; Szep, A.A. (Eds.) Chemical Sensing with Solid State Devices; Academic Press: Boston, MA, USA, 2014; p. 925311.
    • 6. Wan, H.; Ha, D.; Zhang, W.; Zhao, H.; Wang, X.; Sun, Q.; Wang, P. Design of a novel hybrid sensor with microelectrode array and LAPS for heavy metal determination using multivariate nonlinear calibration. Sens. Actuators B Chem. 2014, 192, 755-761. [CrossRef]
    • 7. Bakker, E.; Bühlmann, P.; Pretsch, E. Polymer membrane ion-selective electrodes-What are the limits? Electroanalysis 1999, 11, 915-933. [CrossRef]
    • 8. Shioya, T.; Nishizawa, S.; Teramae, N. Anion recognition at the liquid-liquid interface. Sulfate transfer across the 1,2-dichloroethane-water interface facilitated by hydrogen-bonding ionophores. J. Am. Chem. Soc. 1998, 120, 11534-11535. [CrossRef]
    • 9. Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083-3132. [CrossRef] [PubMed]
    • 10. Koryta, J. Theory and applications of ion-selective electrodes. Anal. Chim. Acta 1972, 61, 329-411. [CrossRef]
    • 11. Ho, T.D.; Zhang, C.; Hantao, L.W.; Anderson, J.L. Ionic liquids in analytical chemistry: Fundamentals, advances, and perspectives. Anal. Chem. 2014, 86, 262-285. [CrossRef] [PubMed]
    • 12. Ahrens, S.; Peritz, A.; Strassner, T. Tunable aryl alkyl ionic liquids (TAAILs): The next generation of ionic liquids. Angew. Chem. Int. Ed. 2009, 48, 7908-7910. [CrossRef] [PubMed]
    • 13. Dias, A.M.A.; Marceneiro, S.; Braga, M.E.M.; Coelho, J.F.J.; Ferreira, A.G.M.; Simões, P.N.; Veiga, H.I.M.; Tomé, L.C.; Marrucho, I.M.; Esperança, J.M.S.S.; et al. Phosphonium-based ionic liquids as modifiers for biomedical grade poly (vinyl chloride). Acta Biomater. 2012, 8, 1366-1379. [CrossRef] [PubMed]
    • 14. Wanigasekara, E.; Perera, S.; Crank, J.A.; Sidisky, L.; Shirey, R.; Berthod, A.; Armstrong, D.W. Bonded ionic liquid polymeric material for solid-phase microextraction GC analysis. Anal. Bioanal. Chem. 2010, 396, 511-524. [CrossRef] [PubMed]
    • 15. Wang, Y.; Tian, M.; Bi, W.; Row, K.H. Application of ionic liquids in high performance reversed-phase chromatography. Int. J. Mol. Sci. 2009, 10, 2591-2610. [CrossRef] [PubMed]
    • 16. Peng, B.; Zhu, J.; Liu, X.; Qin, Y. Potentiometric response of ion-selective membranes with ionic liquids as ion-exchanger and plasticizer. Sens. Actuators B Chem. 2008, 133, 308-314. [CrossRef]
    • 17. Zhuo, K.; Wei, Y.; Ma, J.; Chen, Y.; Bai, G. Response of PVC membrane ion-selective electrodes to alkylmethylimidazolium ionic liquid cations. Sens. Actuators B Chem. 2013, 186, 461-465. [CrossRef]
    • 18. Wardak, C. Solid Contact Nitrate Ion-Selective Electrode Based on Ionic Liquid with Stable and Reproducible Potential. Electroanalysis 2014, 26, 864-872. [CrossRef]
    • 19. Mendecki, L.; Chen, X.; Callan, N.; Thompson, D.; Schazmann, B.; Granados-Focil, S.; Radu, A. Simple, Robust, and Plasticizer-Free Iodide-Selective Sensor Based on Copolymerized Triazole-Based Ionic Liquid. Anal. Chem. 2016, 88, 4311-4317. [CrossRef] [PubMed]
    • 20. Kakiuchi, T. Electrochemical aspects of ionic-liquid| water two-phase systems. Anal. Chem. 2007, 79, 6442-6449. [CrossRef]
    • 21. Kakiuchi, T.; Yoshimatsu, T. A new salt bridge based on the hydrophobic room-temperature molten salt. Bull. Chem. Soc. Jpn. 2006, 79, 1017-1024. [CrossRef]
    • 22. Kakiuchi, T.; Tsujioka, N.; Kurita, S.; Iwami, Y. Phase-boundary potential across the nonpolarized interface between the room-temperature molten salt and water. Electrochem. Commun. 2003, 5, 159-164. [CrossRef]
    • 23. Fraser, K.J.; MacFarlane, D.R. Phosphonium-based ionic liquids: An overview. Aust. J. Chem. 2009, 62, 309-321. [CrossRef]
    • 24. Rahman, M.; Brazel, C.S. Ionic liquids: New generation stable plasticizers for poly (vinyl chloride). Polym. Degrad. Stab. 2006, 91, 3371-3382. [CrossRef]
    • 25. Weingärtner, H. The static dielectric permittivity of ionic liquids. J. Mol. Liq. 2014, 192, 185-190. [CrossRef]
    • 26. Prete, A.; Paragliola, R.M.; Corsello, S.M. Iodine Supplementation: Usage “with a Grain of Salt”. Int. J. Endocrinol. 2015, 2015, 312305. [CrossRef] [PubMed]
    • 27. Radu, A.; Anastasova-Ivanova, S.; Paczosa-Bator, B.; Danielewski, M.; Bobacka, J.; Lewenstam, A.; Diamond, D. Diagnostic of functionality of polymer membrane-based ion selective electrodes by impedance spectroscopy. Anal. Methods 2010, 2, 1490-1498. [CrossRef]
    • 28. O'Rourke, M.; Duffy, N.; Marco, R.D.; Potter, I. Electrochemical impedance spectroscopy-A simple method for the characterization of polymer inclusion membranes containing Aliquat 336. Membranes 2011, 1, 132-148. [CrossRef] [PubMed]
    • 29. Brinkman, U.A.T.; Bruno, A.E.; Burlingame, A.L. TRAC: Trends in Analytical Chemistry, 1st ed.; Elsevier Science: New York, NY, USA, 2013; Volume 10.
    • 30. Qin, Y.; Bakker, E. Evaluation of the separate equilibrium processes that dictate the upper detection limit of neutral ionophore-based potentiometric sensors. Anal. Chem. 2002, 74, 3134-3141. [CrossRef] [PubMed]
    • 31. Malon, A.; Radu, A.; Qin, W.; Qin, Y.; Ceresa, A.; Maj-Zurawska, M.; Bakker, E.; Pretsch, E. Improving the detection limit of anion-selective electrodes: An iodide-selective membrane with a nanomolar detection limit. Anal. Chem. 2003, 75, 3865-3871. [CrossRef] [PubMed]
    • 32. Cheng, D.C.; Gulari, E. Micellization and intermicellar interactions in aqueous sodium dodecyl benzene sulfonate solutions. J. Colloid Interface Sci. 1982, 90, 410-423. [CrossRef]
    • 33. Schaller, U.; Bakker, E.; Spichiger, U.E.; Pretsch, E. Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal. Chem. 1994, 66, 391-398. [CrossRef]
    • 34. Grygolowicz-Pawlak, E.; Crespo, G.A.; Ghahraman Afshar, M.; Mistlberger, G.; Bakker, E. Potentiometric sensors with ion-exchange donnan exclusion membranes. Anal. Chem. 2013, 85, 6208-6212. [CrossRef] [PubMed]
    • 35. Pérez, M.D.L.A.A.; Marín, L.P.; Quintana, J.C.; Yazdani-Pedram, M. Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination. Sens. Actuators B Chem. 2003, 89, 262-268. [CrossRef]
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article