Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Brabin, Bernard; Gies, Sabine; Owens, Stephen; Claeys, Yves; D’Alessandro, Umberto; Tinto, Halidou; Brabin, Loretta (2016)
Publisher: BioMed Central
Journal: Trials
Languages: English
Types: Article
Subjects: Medicine (miscellaneous), Adherence, Pregnancy, wa_310, Periconceptional, Review, Placenta, Iron, Micronutrients, qu_145.5, Folic acid, Pharmacology (medical), wq_175
Periconceptional supplementation could extend the period over which maternal and fetal nutrition is improved,\ud but there are many challenges facing early-life intervention studies. Periconceptional trials differ from pregnancy\ud supplementation trials, not only because of the very early or pre-gestational timing of nutrient exposure but also\ud because they generate subsidiary information on participants who remain non-pregnant. The methodological\ud challenges are more complex although, if well designed, they provide opportunities to evaluate concurrent\ud hypotheses related to the health of non-pregnant women, especially nulliparous adolescents. This review examines\ud the framework of published and ongoing randomised trial designs. Four cohorts typically arise from the\ud periconceptional trial design — two of which are non-pregnant and two are pregnant — and this structure\ud provides assessment options related to pre-pregnant, maternal, pregnancy and fetal outcomes. Conceptually the\ud initial decision for single or micronutrient intervention is central — as is the choice of dosage and content — in\ud order to establish a comparative framework across trials, improve standardisation, and facilitate interpretation of\ud mechanistic hypotheses. Other trial features considered in the review include: measurement options for baseline\ud and outcome assessments; adherence to long-term supplementation; sample size considerations in relation to\ud duration of nutrient supplementation; cohort size for non-pregnant and pregnant cohorts as the latter is influenced\ud by parity selection; integrating qualitative studies and data management issues. Emphasis is given to low resource\ud settings where high infection rates and the possibility of nutrient-infection interactions may require appropriate\ud safety monitoring. The focus is on pragmatic issues that may help investigators planning a periconceptional trial.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, et al. Possible prevention of neural-tube defects by periconceptional vitamin supplementation. Lancet. 1980;1:339-40.
    • 2. De-Regil LM,Fernandez-Gaxiola AC, Dowswell T, Pena-Rosas JP. Effects and safety of periconceptional folate supplementation for preventing birth defects. Cochrane Database of systematic Reviews 2010, Issue 10. [DOI:10. 1002/14651858.CD007950.pub2]
    • 3. Pharoah POD, Buttfield IH, Hetzel BS. Neurological damage to the fetus resulting from severe iodine deficiency during pregnancy. Lancet. 1971;1:308-10.
    • 4. Cetin I, Berti C, Calabrese S. Role of micronutrients in the periconceptional period. Hum Reproduction Update. 2010;16:80-95.
    • 5. Ronsmans C, Fisher DJ, Osmond C, Margetts BM. Fall CHD for the Maternal Micronutrient Supplementation Group (MMSSG). Multiple micronutrient supplementation during pregnancy in low-income countries: a metaanalysis of effects on stillbirths and on early and late neonatal mortality. Food Nutr Bull. 2009;30:S547-26.
    • 6. Ramakrishnan U, Grant FK, Goldenberg T, Bui V, Imdad A, Bhutta ZA. Effect of multiple micronutrient supplementation on pregnancy and infant outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26 Suppl 1:153-67.
    • 7. Persson LA, Arifeen S, Ekström E-C, Rasmussen KM, Frongillo EA, Yunus M, et al. Effects of prenatal micronutrient and early food supplementation on maternal hemoglobin, birth weight, and infant mortality among children in Bangladesh: the MINIMat randomized trial. JAMA. 2012;307:2050-9.
    • 8. West Jr KP, Shamim AA, Mehra S, Labrique AB, Ali H, Shaikh S, et al. Effect of maternal multiple micronutrient vs iron-folic acid supplementation on infant mortality and adverse birth outcomes in rural Bangladesh: the JiVitA-3 randomized trial. JAMA. 2014;312:2649-58.
    • 9. Haider BA, Yakoob MY, Bhutta ZA. Effect of multiple micronutrient supplementation during pregnancy on maternal and birth outcomes. BMC Public Health. 2011;13 Suppl 3:S19.
    • 10. Bhutta ZA, Imdad A, Ramakrishnan U, Martorell R. Is it time to replace iron folate supplements in pregnancy with multiple micronutrients? Paediatr Perinat Epidemiol. 2012;26 Suppl 1:27-35.
    • 11. Peña-Rosas JP, De-Regil LM, Dowswell T, Viteri FE. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2012;12:CD004736.
    • 12. Peña-Rosas JP, De-Regil LM, Dowswell T, Viteri FE. Intermittent oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2012;7: CD009997.
    • 13. Allen LH, Peerson JM. Impact of multiple micronutrient versus iron-folic acid supplements on maternal anemia and micronutrient status in pregnancy. Food Nut Bull. 2009;30:S527-32.
    • 14. Brabin L, Brabin BJ, Gies S. Influence of iron status on risk of maternal or neonatal infection and on neonatal mortality with an emphasis on developing countries. Nutr Rev. 2013;71:528-40.
    • 15. Khong TY. Placental vascular development and neonatal outcome. Semin Neonatol. 2004;9:255-63.
    • 16. Chaddha V, Viero S, Huppertz B, Kingdom J. Developmental biology of the placenta and the origins of placental insufficiency. Semin Fetal Neonatal Med. 2004;9:357-69.
    • 17. Lawlor DA. The Society for Social Medicine John Pemberton Lecture 2011. Developmental overnutrition-an old hypothesis with new importance? Int J Epidemiol. 2013;42:7-29.
    • 18. Ramakrishnan U, Grant F, Goldenberg T, Zongrone A, Martorell R. Effect of women's nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26 Suppl 1:285-301.
    • 19. Kalanda BF, Verhoeff FH, Brabin BJ. Chronic malnutrition in pregnant adolescents in rural Malawi: an anthropometric study. Acta Obstet Gynecol Scand. 2006;85:33-9.
    • 20. Laurence KM, James N, Miller MH, Tennant GB, Campbell H. Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. BMJ (Clinical Research Edition). 1981;282:1509-11.
    • 21. The Lancet. Protocol summaries. Protocol 10PRT/6932: Malaria risk prior to and during early pregnancy in nulliparous women receiving long-term weekly iron and folic acid supplementation (WIFS): a non-inferiority randomised controlled trial [NCT 01210040]. Accessed 1 March 2015.
    • 22. Kirke PN, Daly LE, Elwood JH. A randomised trial of low dose folic acid to prevent neural tube defects. The Irish Vitamin Study Group. Arch Dis Child. 1992;67:1442-6.
    • 23. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet. 1991;338:131-7.
    • 24. Khambalia AZ, O'Connor DL, Macarthur C, Dupuis A, Zlotkin SH. Periconceptional iron supplementation does not reduce anemia or improve iron status among pregnant women in rural Bangladesh. Am J Clin Nutr. 2009;90:1295-302.
    • 25. Indian Council of Medical Research Collaborating Centres and Central Technical Co-ordinating Unit. Multicentric study of efficacy of periconceptional FA containing vitamin supplementation in prevention of open neural tube defects from India. Ind J Med Res. 2000;112:206-11.
    • 26. Nguyen PH, Lowe AE, Martorell R, Nguyen H, Pham H, Nguyen S, et al. Rationale, design, methodology and sample characteristics for the Vietnam pre-conceptual micronutrient supplementation trial (PRECONCEPT): a randomized controlled study. Public Health. 2012;12:898.
    • 27. Owens S, Gulati R, Fulford AJ, Sosseh F, Denison FC, Brabin BJ, et al. Periconceptional multiple-micronutrient supplementation and placental function in rural Gambian women: a double-blind, randomized, placebocontrolled trial. Am J Clin Nutr. 2015. doi:10.3945/ajcn.113.072413.
    • 28. West KP, Katz J, Khatry SK, LeClerq SC, Pradhan EK, Shrestha SR, et al. Double blind cluster randomised trial of low dose supplementation with vitamin A or β carotene on mortality related to pregnancy in Nepal. Br Med J. 1999;318:570-5.
    • 29. Hambidge KM, Krebs NF, Westcott JE, Garces A, Goudar SS, Kodkany BS, et al. Preconception maternal nutrition: a multi-site randomized controlled trial. BMC Pregnancy Childbirth. 2014;14:11.
    • 30. Czeizel AE, Dudas I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. New Eng J Med. 1992;327: 1832-5.
    • 31. Gulati R, Bailey R, Prentice AM, Brabin BJ, Owens S. Haematological effects of multimicronutrient supplementation in non-pregnant Gambian women. Eur J Clin Nutr. 2009;63:970-7.
    • 32. Zheng X, Pei L, Chen G, Song X, Wu J, Ji Y. Periconceptional multivitamin supplementation containing folic acid and sex ratio at birth in a Chines population: a prospective cohort study. Paediatr Perinat Epidemiol. 2015;29: 299-306.
    • 33. Berger J, Thanh HT, Cavalli-Sforza T, Smitasiri S, Khan NC, Milani S, et al. Community mobilization and social marketing to promote weekly iron-folic acid supplementation in women of reproductive age in Vietnam: impact on anemia and iron status. Nut Rev. 2005;63:S95-108.
    • 34. Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, et al. Prevention of neural-tube defects with folic acid in China. New Eng J Med. 1999;341: 1485-90.
    • 35. Wang YF, Pei LJ, Song XM, Chen G, Zheng XY. Impact of periconceptional multi-micronutrient supplementation on gestation: a population-based study. Biomed Environ Sci. 2013;26:23-31.
    • 36. Vergel RG, Sanchez LR, Heredero BL, Rodriguez PL, Martinez AJ. Primary prevention of neural tube defects with folic acid supplementation: Cuban experience. Prenat Diagn. 1990;10:149-52.
    • 37. Timmermans S, Jaddoe VWV, Hofman A, Steegers-Theunissen RPM, Steegers EAP. Periconception folic acid supplementation, fetal growth and the risk of low birth weight and preterm birth: the Generation R Study. Br J Nut. 2009; 102:777-85.
    • 38. Chaouki ML, Benmiloud M. Article Title: Prevention of iodine deficiency disorders by oral administration of lipiodol during pregnancy. Eur J Endocrin. 1994;130:547-51.
    • 39. Vickers AJ, Altman DG. Analysing controlled trials with baseline and followup measurements. BMJ. 2001;323:1123-4.
    • 40. Davey Smith G, Leary S, Ness A, Lawlor DA. Challenges and novel approaches in the epidemiological study of early life influences on later disease. Adv Exp Med Biol. 2009;646:1-14.
    • 41. Buhling KJ, Grajecki D. The effect of micronutrient supplements on female fertility. Curr Opin Obstet Gynecol. 2013;25:173-80.
    • 42. Heerman WJ, Bian A, Shintani A, Barkin SL. Interaction between maternal prepregnancy body mass index and gestational weight gain shapes infant growth. Acad Pediatr. 2014;14:463-70.
    • 43. Brabin BJ, Romagosa C, Abdelgalil S, Menéndez C, Verhoeff FH, McGready R, et al. The sick placenta-the role of malaria. Placenta. 2004;25:359-78.
    • 44. van Rheenen P. Less iron deficiency anaemia after delayed cord-clamping. Paediatr Int Child Health. 2013;33:57-8.
    • 45. Jonker FA, Calis JC, van Hensbroek MB, Phiri K, Geskus RB, Brabin BJ, et al. Iron status predicts malaria risk in Malawian preschool children. PLoS One. 2012;7(8):e42670. doi:10.1371/journal.pone.0042670.
    • 46. McArdle HJ, Gambling L, Kennedy C. Iron deficiency during pregnancy: the consequences for placental function and fetal outcome. Proc Nutr Soc. 2014;73:9-15.
    • 47. Swali A, McMullen S, Hayes H, Gambling L, McArdle HJ, Langley-Evans SC. Cell cycle regulation and cytoskeletal remodelling are critical processes in the nutritional programming of embryonic development. PLoS One. 2011;6:e23189.
    • 48. McArdle HJ, Ashworth CJ. Micronutrients in fetal growth and development. Br Med Bull. 1999;55:499-510.
    • 49. Langley-Evans SC. Nutritional programming of disease: unravelling the mechanism. J Anat. 2009;215:36-51.
    • 50. Cross JC, Mickelson L. Nutritional influences on implantation and placental development. Nutr Rev. 2006;64:S12-8. discussion S72-91.
    • 51. Lawlor DA, Owen CG, Davies AA, Whincup PH, Ebrahim S, Cook DG, et al. Sex differences in the association between birth weight and total cholesterol. A meta-analysis. Ann Epidemiol. 2006;16:19-25.
    • 52. Hartwig IR, Pincus MK, Diemert A, Hecher K, Arck PC. Sex-specific effect of first-trimester maternal progesterone on birthweight. Hum Reprod. 2013;28: 77-86.
    • 53. Cooper WN, Khulan B, Owens S, Elks CE, Seidel V, Prentice AM, et al. DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J. 2012;26:1782-90.
    • 54. Connor KL, Challis JR, van Zijl P, Rumball CW, Alix S, Jaquiery AL, et al. Do alterations in placental 11beta-hydroxysteroid dehydrogenase (11betaHSD) activities explain differences in fetal hypothalamic-pituitary-adrenal (HPA) function following periconceptional undernutrition or twinning in sheep? Reprod Sci. 2009;16:1201-12.
    • 55. Catalano PM, Thomas AJ, Huston LP, Fung CM. Effect of maternal metabolism on fetal growth and body composition. Diabetes Care. 1998;21:B85-90.
    • 56. Fowden AL, Forhead AJ, Sferruzzi-Perri AN, Burton GJ, Vaughan OR. Endocrine regulation of placental phenotype. Placenta. 2014: S0143- 4004(14)00873
    • 57. Nelson SM, Mathews P, Poston L. Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum Reprod Update. 2010;16:255-75.
    • 58. Czeizel AE, Dudas I, Fritz G, Técsöi A, Hanck A, Kunovits G. The effect of periconceptional multivitamin-mineral supplementation on vertigo, nausea and vomiting in the first trimester of pregnancy. Arch Gynecol Obstet. 1992; 251:181-5.
    • 59. Raiten D, Namaste S, Brabin BJ. Eds. Considerations for the Safe and Effective Use of Iron Interventions in Areas of Malaria Burden: Full Technical Report. National Institute for Child health and Human Development, 2009. http://www.nichd.nih.gov/news/resources/spotlight/Pages/031512-ironmalaria.aspx. Accessed 1 March 2015.
    • 60. Alfaradhi MZ, Ozanne SE. Developmental programming in response to maternal overnutrition. Front Genet. 2011;2:27. doi:10.3389/fgene.2011.00027.
    • 61. Taylor PD, Poston L. Developmental programming of obesity in mammals. Exp Physiol. 2007;92:287-98.
    • 62. Caselli G, Vallin J, Wunch G. Demography: Analysis and synthesis. A treatise in population. London: Academic Press; 2006.
    • 63. Mistry HD, Gill CA, Kurlak LO, Seed PT, Hesketh JE, Méplan C, et al. SCOPE Consortium, Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks gestation in nulliparous women who subsequently develop preeclampsia. Free Radic Biol Med. 2015;78:147-55.
    • 64. Eskes TKAB. Homocysteine and human reproduction. In: Carmel R, Jacobsen DW, editors. Homocysteine in health and disease. Cambridge: University Press; 2001.
    • 65. Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytikainen LP, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet. 2012;44:269-76.
    • 66. Soininen P, Kangas AJ, Wurtz P, Tukiainen T, Tynkkynen T, Laatikainen R, et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst. 2009;134:1781-5.
    • 67. Conde-Agudelo A, Papageorghiou AT, Kennedy SH, Villar J. Novel biomarkers for the prediction of the spontaneous preterm birth phenotype: a systematic review and meta-analysis. Bri J Obs Gyaen. 2011;118:1042-54.
    • 68. Conde-Agudelo A, Papageorghiou AT, Kennedy SH, Villar J. Novel biomarkers for predicting intrauterine growth restriction: a systematic review and meta-analysis. Bri J Obs Gyaen. 2013;120:681-94.
    • 69. Garland SM, Ní Chuileannáin F, Satzke C, Robins-Browne R. Mechanisms, organisms and markers of infection in pregnancy. J Reprod Immunol. 2002; 57:169-83.
    • 70. Shrier I, Steele RJ, Verhagen E, Herbert R, Riddell CA, Kaufman JS. Beyond intention to treat: what is the right question? Clin Trials. 2014;11(1):28-37. doi:10.1177/1740774513504151.
    • 71. Compaore A, Gies S, Brabin B, Tinto H, Brabin L. There is iron and iron…” Burkinabè women's perceptions of iron supplementation: a qualitative study. Matern Child Health J. 2014;18:1976-84.
    • 72. Stokes E, Dumbaya I, Owens S, Brabin L. The right to remain silent; a qualitative study of the medical and social ramifications of pregnancy disclosure for Gambian women. Bri J Obs Gyaen. 2008;115:1641-7.
    • 73. Kuchinke W, Wiegelmann S, Verplancke P, Ohmann C. Extended cooperation in clinical studies through exchange of CDISC metadata between different study software solutions. Methods Inf Med. 2006;45:441-6.
    • 74. Chow SC, Liu JP. Design and analysis of clinical trials: concepts and methodologies. 2nd ed. Hoboken: Wiley; 2003.
    • 75. Payne PRO, Embi PJ, Johnson SB, Mendonca E, Starren J. Improving clinical trial participant tracking tools using knowledge-anchored design methodologies. Appl Clin Inform. 2010;12:177-96.
    • 76. Kozuki N, Lee AC, Silveira MF, Sania A, Vogel JP, Adair L, et al. Child Health Epidemiology Reference Group Small-for-Gestational-Age-Preterm Birth Working Group. The associations of parity and maternal age with small-forgestational-age, preterm, and neonatal and infant mortality: a meta-analysis. BMC Public Health. 2013;13 Suppl 3:S2.
    • 77. Wortelboer EJ, Koster MP, Kuc S, Eijkemans MJ, Bilardo CM, Schielen PC, et al. Longitudinal trends in fetoplacental biochemical markers, uterine artery pulsatility index and maternal blood pressure during the first trimester of pregnancy. Ultrasound Obstet Gynecol. 2011;38:383-8.
    • 78. Beard JL. Effectiveness and strategies of iron supplementation during pregnancy. Am J Clin Nutr. 2000;71:1288S-94.
    • 79. Ronnenberg AG, Wood RJ, Wang X, Xing H, Chen C, Chen D, et al. Preconception hemoglobin and ferritin concentrations are associated with pregnancy outcome in a prospective cohort of Chinese women. J Nutr. 2004;134:2586-91.
    • 80. Cogswell ME, Parvanta I, Ickes L, Yip R, Brittenham GM. Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial. Am J Clin Nutr. 2003;78:773-81.
    • 81. Siega-Riz AM, Hartzema AG, Turnbull C, Thorp J, McDonald T, Cogswell ME. The effects of prophylactic iron given in prenatal supplements on iron status and birth outcomes: a randomized controlled trial. Am J Obs Gynec. 2006;194:512-9.
    • 82. Wu G, Imhoff-Kunsch B, Girard AW. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol. 2012;26 Suppl 1:4-26.
    • 83. Lawlor DA, Relton C, Satter N, Nelson SM. Maternal adiposity - a determinant of perinatal and offspring outcomes? Nat Rev Endocrinol. 2012;11: 679-688.
    • 84. Poston L, Igosheva N, Mistry HD, Seed PT, Shennan AH, Rana S, et al. Role of oxidative stress and antioxidant supplementation in pregnancy disorders. Am J Clin Nutr. 2011;94:1980S-5.
    • 85. Kweider N, Huppertz B, Wruck CJ, Beckmann R, Rath W, Pufe T, et al. A role for Nrf2 in redox signalling of the invasive extravillous trophoblast in severe early onset IUGR associated with preeclampsia. PLoS One. 2012;7:e47055.
    • 86. Brik M, Antonio P, Perales-Puchalt A, Diago V, Perales A. Cervical interleukin6 as a predictive test for preterm delivery in symptomatic women: preliminary results. Eur J Obstet Gynecol Reprod Biol. 2011;155:14-8.
    • 87. Maitre L, Fthenou E, Athersuch T, Coen M, Toledano MB, Holmes E, et al. Urinary metabolic profiles in early pregnancy are associated with preterm birth and fetal growth restriction in the Rhea mother-child cohort study. BMC Med. 2014;12:110.
    • 88. Hindmarsh PC, Geary MP, Rodeck CH, Jackson MR, Kingdom JC. Effect of early maternal iron stores on placental weight and structure. Lancet. 2000; 26(356):719-23.
    • 89. Cetin I, Alvino G. Intrauterine growth restriction: implications for placental metabolism and transport. A review. Placenta. 2009;30 (Suppl A):S77-82.
    • 90. Kadyrov M, Kosanke G, Kingdom J, Kaufmann P. Increased fetoplacental angiogenesis during first trimester in anaemic women. Lancet. 1998;352:1747-9.
    • 91. Bazer FW, Kim J, Song G, Ka H, Tekwe CD, Wu G. Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development. Ann N Y Acad Sci. 2012;1271:88-96.
    • 92. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nature Med. 2012;18:1754-67.
    • 93. Redmer DA, Wallace JM, Reynolds LP. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest Anim Endocrinol. 2004;27:199-217.
    • 94. Chappell LC, Seed PT, Briley AL, Kelly FJ, Lee R, Hunt BJ, et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomised trial. Lancet. 1999;354:810-6.
    • 95. Magnusardottir AR, Steingrimsdottir L, Thorgeirsdottir H, Hauksson A, Skuladottir GV. Red blood cell n-3 polyunsaturated fatty acids in first trimester of pregnancy are inversely associated with placental weight. Acta Obstet Gynecol Scand. 2009;88:91-7.
    • 96. Wang X, Mendelsohn L, Rogers H, Leitman S, Raghavachari N, Yang Y, Yau YY, et al. Heme-bound iron activates placenta factor in erythroid cells via erythroid Kruppel-like factor. Blood 2014;124:946-954.
    • 97. Brabin BJ, Fletcher KA, Brown N. Do disturbances within the folate pathway contribute to low birth weight in malaria? Trends Parasitol. 2003;19:39-43.
    • 98. Morken NH, Källen K, Jacobsson B. Fetal growth and onset of delivery: a nationwide population-based study of preterm infants. Am J Obstet Gynecol. 2006;195:154-61.
    • 99. Miller HC, Jekel JF. Epidemiology of spontaneous premature rupture of membranes: factors in pre-term births. Yale J Biol Med. 1989;62:241-51.
    • 100. Hodgetts V, Morris R, Francis A, Gardosi J, Ismail K. Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small-for-gestational age neonates: a population study, systematic review and meta-analysis. Bri J Obs Gyaen. 2015;122:478-90.
    • 101. Azzi S, Sas TC, Koudou Y, Le Bouc Y, Souberbielle JC, Dargent-Molina P, et al. Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics. 2014;9:338-45.
    • 102. Zhou SJ, Anderson AJ, Gibson RA, Makrides M. Effect of iodine supplementation in pregnancy on child development and other clinical outcomes: a systematic review of randomized controlled trials. Am J Clin Nutr. 2013;98:1241-54.
    • 103. Korevaar TI, Steegers EA, Schalekamp-Timmermans S, Ligthart S, de Rijke YB, et al. Soluble Flt1 and placental growth factor are novel determinants of newborn thyroid (dys)function: the generation R study. J Clin Endocrinol Metab. 2014;99:E1627-34.
    • 104. Jackson AA. Nutrients, growth, and the development of programmed metabolic function. Adv Exp Med Biol. 2000;478:41-55.
    • 105. Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. 2000;71:1344S-52.
    • 106. Cupedo T, Nagasawa M, Weijer K, Blom B, Spits H. Development and activation of regulatory T cells in the human fetus. Eur J Immunol. 2005;35: 383-90.
    • 107. Gambling L, Danzeisen R, Fosset C, Andersen HS, Dunford S, Srai SK, et al. Iron and copper interactions in development and the effect on pregnancy outcome. J Nutr. 2003;133 Suppl 1:1554S-6.
    • 108. Tang R, Tang IC, Henry A, Welsh A. Limited evidence for calcium supplementation in preeclampsia prevention: a meta-analysis and systematic review. Hypertens Pregnancy. 201534:181-203.
    • 109. Strickland KC, Krupenko NI, Krupenko SA. Molecular mechanisms underlying the potentially adverse effects of folate. Clin Chem Lab Med. 2013;51:607-16.
    • 110. Berti C, Biesalski HK, Gärtner R, Lapillonne A, Pietrzik K, Poston L, et al. Micronutrients in pregnancy: current knowledge and unresolved questions. Clin Nutr. 2011;30:689-701.
    • 111. Imdad A, Bhutta ZA. Effect of balanced protein energy supplementation during pregnancy on birth outcomes. BMC Public Health. 2011;11 Suppl 3: S17. doi:10.1186/1471-2458-11-S3-S17.
    • 112. Lynch SR. The potential impact of iron supplementation during adolescence on iron status in pregnancy. J Nutr. 2000;130:448S-51.
    • 113. Mihaila C, Schramm J, Strathmann FG, Lee DL, Gelein RM, Luebke AE, et al. Identifying a window of vulnerability during fetal development in a maternal iron restriction model. PLoS One. 2011;6(3):e17483.
    • 114. Groenen PM, van Rooij IA, Peer PG, Ocké MC, Zielhuis GA, SteegersTheunissen RP. Low maternal dietary intakes of iron, magnesium, and niacin are associated with spina bifida in the offspring. RP J Nutr. 2004;134:1516-22.
    • 115. Lönnerdal B. Effects of maternal dietary intake on human milk composition. J Nutr. 1986;116:499-513.
    • 116. Kambe T, Weaver BP, Andrews GK. The genetics of essential metal homeostasis during development. Genesis. 2008;46:214-28.
    • 117. McPartlin J, Halligan A, Scott JM, Darling M, Weir DG. Accelerated folate breakdown in pregnancy. Lancet. 1993;341:148-9.
    • 118. Catov JM, Bodnar LM, Olsen J, Olsen S, Nohr EA. Periconceptional multivitamin use and risk of preterm or small-for-gestational-age births in the Danish National Birth Cohort. Am J Clin Nutr. 2011;94:906-12.
    • 119. Timmermans S, Jaddoe VW, Silva LM, Hofman A, Raat H, SteegersTheunissen RP, et al. Folic acid is positively associated with uteroplacental vascular resistance: the Generation R study. Nutr Metab Cardiovasc Dis. 2011;21:54-61.
    • 120. Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988;242:1412-5.
  • No similar publications.