LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sandoval Orozco, A.L.; Arenas, Gonzalez; Rosales, Corripio; Garcia Villalba, L.J.; Hernandez-Castro, Julio C. (2013)
Publisher: Springer Link
Languages: English
Types: Article
Subjects: QA75

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
One of the most relevant applications of digital image forensics is to accurately identify the device used for taking a given set of images, a problem called source identification. This paper studies recent developments in the field and proposes the mixture of two techniques (Sensor Imperfections and Wavelet Transforms) to get better source identification of images generated with mobile devices. Our results show that Sensor Imperfections and Wavelet Transforms can jointly serve as good forensic features to help trace the source camera of images produced by mobile phones. Furthermore, the model proposed here can also determine with high precision both the brand and model of the device.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 3. Boutell M, Luo J (2005) Beyond pixels: exploiting camera metadata for photo classification. Pattern Recogn 38(6):935-946. doi:10.1016/j.patcog.2004.11.013
    • 4. Celiktutan O, Avcibas I, Sankur B, Ayerden NP, Capar C (2006) Source cell-phone identification. In: 2006 IEEE 14th signal processing and communications applications, pp 1-3. doi:10.1109/SIU.2006. 1659882
    • 5. Chang C, Lin C (2001) LIBSVM: A library for support vector machines. Tech. rep. Software available at: http://www.csie.ntu.edu.tw/cjlin/libsvm
    • 6. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091-2106
    • 7. Geradts ZJ, Bijhold J, Kieft M, Kurosawa K, Kuroki K, Saitoh N (2001) Methods for identification of images acquired with digital cameras. In: Proceedings of the SPIE, vol 4232. Spie, pp 505-512. doi:10.1117/12.417569
    • 8. Khannaa N, Mikkilinenib AK, Chiub GT, Allebacha JP, Delpa EJ (2006) Forensic classification of imaging sensor types. In: Rfc. Purdue University, USA
    • 9. Luka J, Fridrich J, Goljan M (2006) Digital camera identification from sensor pattern noise. IEEE Trans Inform Forensics Security 1(2):205-214. doi:10.1109/TIFS.2006.873602
    • 10. Mckay C, Swaminathan A, Gou H, Wu M (2008) Image acquisition forensics: forensic analysis to identify imaging source. In: IEEE international conference on acoustics speech and, signal processing, pp 1657-1660. doi:10.1109/ICASSP.2008.4517945
    • 11. Meng FJ, Kong XW, You XG (2008) Source camera identification based on image bi-coherence and wavelet features. In: Proceedings of the fourth annual IFIP WG 11.9 international conference on digital forensics. Kyoto, Japan
    • 12. Ozparlak L, Avcibas I (2011) Differentiating between images using wavelet-based transforms: a comparative study. IEEE Trans Inform Forensics Security 6(4):1418-1431
    • 13. Pudil P, Novovicˇová J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15(11):1119-1125
    • 14. Randen T, Husøy JH (1999) Filtering for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell 21(4):291-310
    • 15. Baer R (2010) Resolution limits in digital photography: the looming end of the pixel wars - OSA technical digest (CD). In: Proceedings of the imaging systems. Optical Society of America, p ITuB3
    • 16. Romero NL, Chornet VG, Cobos JS, Carot AS, Centellas FC, Mendez MC (2008) Recovery of descriptive information in images from digital libraries by means of EXIF metadata. Library Hi Tech 26(2):302-315. doi:10.1108/07378830810880388
    • 17. Tesic J (2005) Metadata practices for consumer photos. IEEE Multimed 12(3):86-92. doi:10.1109/ MMUL.2005.50
    • 18. Tsai MJ, Lai CL, Liu J (2007) Camera/mobile phone source identification for digital forensics. In: Proceedings of the IEEE international conference on acoustics speech and signal processing ICASSP 07, pp II-221-II-224
    • 19. Van Lanh T, Chong KS, Emmanuel S, Kankanhalli MS (2007) A survey on digital camera image forensic methods. IEEE Int Conf Multimed Expo 2007:16-19. doi:10.1109/ICME.2007.4284575
    • 20. Wang B, Guo Y, Kong X, Meng F (2009) Source camera identification forensics based on wavelet features. In: Proceedings of the international conference on intelligent information hiding and multimedia signal processing, vol 0. IEEE Computer Society, Los Alamitos, pp 702-705
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article