Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Higgins, Matthew D.; Green, Roger; Leeson, Mark S. (2009)
Publisher: IEEE
Languages: English
Types: Article
Subjects: QA, TK
A genetic algorithm controlled multispot transmitter is proposed as an alternative approach to optimizing the power distribution for single element receivers in fully diffuse mobile indoor optical wireless communication systems. By specifically tailoring the algorithm, it is shown that by dynamically altering the intensity of individual diffusion spots, a consistent power distribution, with negligible impact on bandwidth and rms delay spread, can be created in multiple rooms independent of reflectivity characteristics and user movement patterns. This advantageous adaptability removes the need for bespoke system design, aiming instead for the use of a more cost effective, optimal transmitter and receiver capable of deployment in multiple scenarios and applications. From the simulations conducted it is deduced, that implementing a receiver with a FOV = 55 degrees in conjunction with either of two notable algorithms, the dynamic range of the rooms, referenced against the peak received power, can be reduced by up to 26% when empty, and furthermore to within 12% of this optimized case when user movement perturbs the channel.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] F. R. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474-1486, 1979.
    • [2] A. J. C. Moreira, R. T. Valadas, and A. M. de Oliveira Duarte, “Optical interference produced by artificial light,” Wirel.Netw., vol. 3, no. 2, pp. 131-140, 1997.
    • [3] H. Hashemi, G. Yun, M. Kavehrad, F. Behbahani, and P. A. Galko, “Indoor propagation measurements at infrared frequencies for wireless local area networks applications,” IEEE Trans. Veh. Technol., vol. 43, no. 3, pp. 562-576, 1994.
    • [4] D. C. O'Brien, M. Katz, P. Wang, K. Kalliojarvi, S. Arnon, M. Matsumoto, R. J. Green, and S. Jivkova, “Short range optical wireless communications,” Wireless World Research Forum, 2005.
    • [5] P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077-2088, 2000.
    • [6] R. Ramirez-Iniguez and R. J. Green, “Optical antenna design for indoor optical wireless communication systems,” Int. J. Commun. Syst., vol. 18, no. 3, pp. 229-245, 2005.
    • [7] M. F. L. Abdullah, “Techniques for signal to noise ratio adaptation in infrared optical wireless for optimisation of receiver performance,” Ph.D. dissertation, 2007.
    • [8] D. C. M. Lee, J. M. Kahn, and M. D. Audeh, “Trellis-coded pulseposition modulation for indoor wireless infrared communications,” IEEE Trans. Commun., vol. 45, no. 9, pp. 1080-1087, 1997.
    • [9] H. Uno, K. Kumatani, H. Okuhata, I. Shirakawa, and T. Chiba, “ASK digital demodulation scheme for noise immune infrared data communication,” Wirel.Netw., vol. 3, no. 2, pp. 121-129, 1997.
    • [10] R. J. Dickenson and Z. Ghassemlooy, “A feature extraction and pattern recognition receiver employing wavelet analysis and artificial intelligence for signal detection in diffuse optical wireless communications,” IEEE Trans. Wireless Commun., vol. 10, no. 2, pp. 64-72, 2003.
    • [11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.
    • [12] D. W. K. Wong, G. Chen, and J. Yao, “Optimization of spot pattern in indoor diffuse optical wireless local area networks,” Opt. Express, vol. 13, no. 8, pp. 3000-3014, 2005.
    • [13] M. Wen, J. Yao, D. W. K. Wong, and G. C. K. Chen, “Holographic diffuser design using a modified genetic algorithm,” Opt.Eng., vol. 44, no. 8, pp. 085 801-8, 2005.
    • [14] P. L. Eardley, D. R. Wisely, D. Wood, and P. McKee, “Holograms for optical wireless lans,” IEE Proc. Optoelectron., vol. 143, no. 6, pp. 365- 369, 1996.
    • [15] A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622-1631, 2004.
    • [16] H. Yang and C. Lu, “Infrared wireless lan using multiple optical sources,” IEE Proc. Optoelectron., vol. 147, no. 4, pp. 301-307, 2000.
    • [17] V. Pohl, V. Jungnickel, and C. von Helmolt, “Integrating-sphere diffuser for wireless infrared communication,” IEE Proc. Optoelectron., vol. 147, no. 4, pp. 281-285, 2000.
    • [18] T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100-107, 2004.
    • [19] S. Jivkova, B. A. Hristov, and M. Kavehrad, “Power-efficient multispotdiffuse multiple-input-multiple-output approach to broad-band optical wireless communications,” IEEE Trans. Veh. Technol., vol. 53, no. 3, pp. 882-889, 2004.
    • [20] D. C. O'Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Topics. Quantum Electron., vol. 11, no. 1, pp. 173-183, 2005.
    • [21] C. R. Lomba, R. T. Valadas, and A. M. O. Duarte, “Experimental characterisation and modelling of the reflection of infrared signals on indoor surfaces,” IEE Proc. Optoelectron., vol. 145, pp. 191-197, 1998.
    • [22] B. T. Phong, “Illumination for computer generated pictures,” Commun ACM, vol. 18, no. 6, pp. 311-317, 1975.
    • [23] S. R. Perez, R. P. Jimenez, F. J. L. Hernandez, O. B. G. Hernandez, and A. J. A. Alfonso, “Reflection model for calculation of the impulse response on ir-wireless indoor channels using ray-tracing algorithm,” Microwave. Opt. Technol. Lett., vol. 32, no. 4, pp. 296-300, 2002.
    • [24] J. M. Kahn, W. J. Krause, and J. B. Carruthers, “Experimental characterization of non-directed indoor infrared channels,” IEEE Trans. Commun., vol. 43, no. 234, pp. 1613-1623, 1995.
    • [25] J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367- 379, 1993.
    • [26] J. B. Carruthers, S. M. Carroll, and P. Kannan, “Propagation modelling for indoor optical wireless communications using fast multi-receiver channel estimation,” IEE Proc., Optoelectron., vol. 150, no. 5, pp. 473- 481, 2003.
    • [27] J. B. Carruthers and P. Kannan, “Iterative site-based modeling for wireless infrared channels,” IEEE Trans. Antennas Propag., vol. 50, no. 5, pp. 759-765, 2002.
    • [28] J. B. Carruthers and J. M. Kahn, “Modeling of nondirected wireless infrared channels,” IEEE Trans. Commun., vol. 45, no. 10, pp. 1260- 1268, 1997.
    • [29] BS EN 60825-1:1994: Safety of laser products. Equipment classification, requirements and user's guide, Std.
    • [30] A. C. Boucouvalas, “IEC 825-1 eye safety classification of some consumer electronic products,” IEE Seminar Digests, vol. 1996, no. 32, pp. 13/1-13/6, 1996.
    • [31] I. Haratcherev, J. Taal, K. Langendoen, R. Lagendijk, and H. Sips, “Automatic ieee 802.11 rate control for streaming applications,” Wireless Commun. Mob. Comput., vol. 5, no. 4, pp. 421-437, 2005.
    • [32] A. Garcia-Zambrana and A. Puerta-Notario, “Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems,” IEE Proc., Optoelectron., vol. 150, no. 5, pp. 439-444, 2003.
    • [33] M. R. Pakravan and M. Kavehrad, “Indoor wireless infrared channel characterization by measurements,” IEEE Trans. Veh. Technol., vol. 50, pp. 1053-1073, 2001.
    • [34] T. Ba¨ck, U. Hammel, and H. P. Schwefel, “Evolutionary computation: Comments on the history and current state,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 3-17, 1997.
    • [35] F. Rothlauf, Representations for genetic and evolutionary algorithms. Physica-Verlag, 2002.
    • [36] F. O'Karray and C. W. D. Silva, Soft computing and intelligent systems design : theory, tools, and applications. Pearson/Addison Wesley, 2004.
    • [37] T. Ba¨ck, Evolutionary algorithms in theory and practice : evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, 1996.
    • [38] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,” in Proc. 2nd Int. Conf. Genetic Algorithms and their application, 1987.
    • [39] R. Poli, “Tournament selection, iterated coupon-collection problem, and backward-chaining evolutionary algorithms,” in Foundations of Genetic Algorithms, 2005, pp. 132-155.
    • [40] A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of optical wireless links employing a beam clustering method and diversity receivers,” in IEEE Int. Conf. Commun., vol. 6, 2004, pp. 3341-3347.
    • [41] G. Yun and M. Kavehrad, “Spot-diffusing and fly-eye receivers for indoor infrared wireless communications,” in IEEE Int. Conf. Sel. Topics Wireless Commun., 1992, pp. 262-265.
    • [42] A. S. Glassner, “Space subdivision for fast ray tracing,” IEEE Comput. Graph. Appl., vol. 4, no. 10, pp. 15-22, 1984.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article