You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
arxiv:Condensed Matter::Disordered Systems and Neural Networks
This work explores the nature of the normal modes of vibration for harmonic\ud lattices with the inclusion of disorder in one-dimension (1D) and three-dimensions\ud (3D). The model systems can be visualised as a `ball' and `spring' model in simple\ud cubic configuration, and the disorder is applied to the magnitudes of the masses, or\ud the force constants of the interatomic `springs' in the system.\ud With the analogous nature between the electronic tight binding Hamiltonian\ud for potential disordered electronic systems and the isotropic Born model for\ud phonons in mass disordered lattices we analyse in detail a transformation between\ud the normal modes of vibration throughout a mass disordered harmonic lattice and\ud the electron wave function of the tight-binding Hamiltonian. The transformation\ud is applied to density of states (DOS) calculations and is also particularly useful for\ud determining the phase diagrams for the phonon localisation-delocalisation transition\ud (LDT). The LDT phase boundary for the spring constant disordered system is\ud obtained with good resolution and the mass disordered phase boundary is verified\ud with high precision transfer-matrix method (TMM) results. High accuracy critical\ud parameters are obtained for three transitions for each type of disorder by finite size\ud scaling (FSS), and consequently the critical exponent that characterises the transition\ud is found as = 1:550+0:020\ud -0:017 which indicates that the transition is of the same\ud orthogonal universality class as the electronic Anderson transition.\ud With multifractal analysis of the generalised inverse participation ratio (gIPR)\ud for the critical transition frequency states at spring constant disorder width k = 10\ud and mass disorder width m = 1:2 we confirm that the singularity spectrum is the\ud same within error as the electronic singularity spectrum at criticality and can be considered to be universal.\ud We further investigate the nature of the modes throughout the spectrum of\ud the disordered systems with vibrational eigenstate statistics. We find deviations of\ud the vibrational displacement \ud uctuations away from the Porter-Thomas distribution\ud (PTD) and show that the deviations are within the vicinity of the so called `bosonpeak'\ud (BP) indicating the possible significance of the BP.
[1] R. C. Chu, R. E. Simons, M. J. Ellsworth, R. R. Schmidt, and V. Cozzolino. Review of cooling technologies for computer products. IEEE Trans. Device Mater. Reliab., 4:568, 2004.
[2] W. Kim, R. Wang, and A. Majumdar. Nanostructuring expands thermal limits. Nanotoday, 2:40, 2007.
[3] H. J. Goldsmid. Electronic Re geration. Pion, London, 1986.
[4] A. F. Io e. Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch Ltd., London, 1958.
[5] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. Fleurial, and P. Gogna. New directions for low-dimensional thermoelectric materials. Adv. Mater., 19:1043, 2007.
[6] G. Slack. CRC Handbook of Thermoelectrics. CRC Press, Boca Raton, FL, 1995.
[8] A. Balandin and K.L. Wang. Signi cant decrease of the lattice thermal conductivity due to phonon con nement in a free-standing semiconductor quantum well. Phys. Rev. B, 58:1544, 1998.
[12] I.M. Lifshitz and A.M. Kosevich. The dynamics of a crystal lattice with defects. Journal of Physics: USSR, 8:217, 1954.
[14] D. Walton and E.J. Lee. Scattering of phonons by a square-well potential and the e ect of colloids on the thermal conductivity. II. theoretical. Phys. Rev., 157:724, 1967.
[15] G.P. Srivastava. The Physics of Phonons. Taylor & Francis Group, 270 Madison Avenue, New York, 1990.
[16] P. D. Maycock. Thermal conductivity of silicon, germanium, III-V compounds and III-V alloys. Solid State Electronics, 10:161, 1967.
[17] P. W. Anderson. Absence of di usion in certain random lattices. Phys. Rev., 109:1492, 1958.
[27] M. E. Fisher. Renormalization group theory: Its basis and formulation in statistical physics. Rev. Mod. Phys., 709, 1998.
[28] D. J. Thouless. Electrons in disordered systems and the theory of localization. Phys. Rep., 13:93, 1974.
[29] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan. Scaling theory of localization: Absence of quantum di usion in two dimensions. Phys. Rev. Lett., 42:673, 1979.
[30] F. J. Wegner. Corrections to scaling laws. Phys. Rev. B, 5:4529, 1972.
[31] F. Wegner. Electrons in disordered systems. Scaling near the mobility edge. Z. Phys. B, 25:327, 1976.
[32] F. Wegner. The mobility edge problem: continuous symmetry and a conjecture. Z. Phys. B, 35:207, 1979.
[33] S. John, H. Sompolinsky, and M. J. Stephen. Localization in a disordered elastic medium near two dimensions. Phys. Rev. B, 27:5592, 1983.
[34] R. Landauer. Electrical resistance of disordered one-dimensional lattices. Phil. Mag., 21:863, 1970.
[35] Martin Janssen. Statistics and scaling in disordered mesoscopic electron systems. Phys. Rep., 295:1, 1998.
[36] R. A. Romer and M. Schreiber. The Anderson Transition and its Rami cations | Localisation, Quantum Interference, and Interactions, volume 630 of Lecture Notes in Physics, chapter Numerical investigations of scaling at the Anderson transition, pages 3{19. Springer, Berlin, 2003.
[37] K. Slevin and T. Ohtsuki. Corrections to scaling at the Anderson transition. Phys. Rev. Lett., 82:382, 1999. ArXiv: cond-mat/9812065.
[38] S. Wa enschmidt, C. P eiderer, and H. v. Lohneysen. Critical behavior of the conductivity of Si:P at the metal-insulator transition under uniaxial stress. Phys. Rev. Lett., 83:3005, 1999. ArXiv: cond-mat/9905297.
[39] A. B. Fowler, G. L. Timp, J. J. Wainer, and R. A. Webb. Observation of resonant tunnelling in silicon inversion layers. Phys. Rev. Lett., 57:138, 1986.
[40] G. J. Dolan, J. C. Licini, and D. J. Bishop. Quantum interference e ects in lithium ring arrays. Phys. Rev. Lett., 56:1493, 1986.
[41] M. A. Paalanen and G. A. Thomas. Experimental tests of localization in semiconductors (metal-insulator transition). Helv. Phys. Acta, 56:27, 1983.
[42] H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken. Experiments on delocalization and universality in the integral quantum Hall e ect. Phys. Rev. Lett., 61:1294, 1988.
[43] A. M. M. Pruisken. Universal singularities in the integral quantum Hall e ect. Phys. Rev. Lett., 61:1297, 1988.
[44] A. M. M. Pruisken. The Quantum Hall E ect. Springer, Berlin, 1987.
[45] S. John. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett., 53:2169, 1984.
[46] S. He and J. D. Maynard. Detailed measurements of inelastic scattering in Anderson localization. Phys. Rev. Lett., 57:3171, 1986.
[47] E. N. Economou and C. M. Soukoulis. Calculation of optical transport and localization quantities. Phys. Rev. B, 40:7977, 1989.
[51] P Bouyer. Quantum gases and optical speckle: a new tool to simulate disordered quantum systems. Reports on Progress in Physics, 73:062401, 2010.
[52] F. C. Brown. The Physics of Solids. W. A. Benjamin, Inc., New York, 1967.
[53] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide. Society for Industrial Mathematics, Philaqdelphia, PA., 1987.
[54] O. Schenk, M. Bollhofer, and R. Romer. On large scale diagonalization techniques for the Anderson model of localization. SIAM Journal of Sci. Comp., 28:963, 2006.
[61] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. Yu, W. A. Goddard, and J. R. Heath. Silicon nano wires as e cient thermoelectric materials. Nature, 451:168, 2008.
[62] C. B. Vining. Desperately seeking silicon. Nature, 451:132, 2008.
[63] P. Dean and M.D. Bacon. The nature of vibrational modes in disordered systems. Proc. Phys. Soc., 81:642, January 1963.
[64] J.R. Hook and H.E. Hall. Solid State Physics. John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, PO19 8SQ, 2nd edition edition, 1991.
[65] R. J. Bell. The dynamics of disordered lattices. Rep. Prog. Phys., 35:1315, 1972.
[66] R.W. Clough and J. Penzien. Dynamics of Structures. McGraw-Hill, Inc., New York, 2nd edition edition, 1993.
[67] J. Canisius and J.L. van Hemmen. Localization of phonons. J. Phys. C, 18:4873, 1985.
[68] Y. Ezzahri, S. Grauby, J.M. Rampnoux, H. Michel, G. Pernot, W. Claeys, S. Dilhaire, C. Rossignol, G. Zeng, and A. Shakouri. Coherent phonons in Si/SiGe superlattices. Phys. Rev. B, 75:195309, 2007.
[69] C. Kittel. Introduction to Solid State Physics. John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, PO19 8SQ, 7th edition edition, 1996.
[70] L. Li and X. Yang. Phonon spectra of a Fibonacci chain. Physica B, 403:2888, 2008.
[71] D. Huang, G. Gumbs, Y. Zhao, and G.W. Auner. Optical-phonon transport and localization in periodic and Fibonacci polar-semiconductor superlattices. Phys. Lett. A, 200:459, 1995.
[73] S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott. Origin of the boson peak in systems with lattice disorder. Phys. Rev. Lett., 86:1255, 2001.
[74] Viktor G Veselago. The electrodynamics of substances with simultaneously negative values of and ? Soviet Physics Uspekhi, 10:509, 1968.
[76] Z. G. Wang, S. H. Lee, C. K. Kim, C. M. Park, K. Nahm, and S. A. Nikitov. Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators. J. Appl. Phys., 103:064907, 2008.
[78] V. I. Oseledec. A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., 19:197, 1968.
[79] J.J. Ludlam, T.O. Stadelmann, S.N. Taraskin, and S.R. Elliott. Numerical analysis of the vibrational eigenmodes of a 2D disordered lattice. Journal of Non-Crystalline Solids, 293:676, 2001.
[82] H. Shima, S. Nishino, and T. Nakayama. Peculiar behaviors of excited modes in harmonic chains with correlated disorder. J. Phys.: Conf. Ser., 92:012156, 2007.
[91] M. Born and T. Von Karman. Boundary conditions. Physik. Zeits., 13:297, 1912.
[92] J. M. Ziman. Electrons and Phonons. Clarendon Press, Oxford, 1967.
[93] Louella J. Vasquez, Alberto Rodriguez, and Rudolf A. Romer. Multifractal analysis of critical states in the 3D Anderson model. I. symmetry relation under typical averaging. Phys. Rev. B, 78:195106, 2008. ArXiv: condmat:0807.2217v1.
[94] J J Ludlam, S N Taraskin, S R Elliot, and D A Drabold. Universal features of localized eigenstates in disordered systems. J. Phys.: Condens. Matter, 17:L321, 2005.
[100] W. Schirmacher, C. Tomaras, B. Schmid, G. Viliani, G. Baldi, G. Ruocco, and T. Scopigno. Vibrational excitations in systems with correlated disorder. Phys. Stat. Sol. C, 5:862, 2008.
[103] T. Horigucho. Lattice Green's function for the simple cubic lattice. J. Phys. Soc. Japan, 30:1261, 1971.
[104] G. S. Joyce. On the simple cubic lattice Green function. Phil. Trans. R. Soc. A, 273:583, 1973.
[105] K. Heun. Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten. Math. Annln., 33:161, 1889.
[106] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in C: The Art of Scienti c Computing. Cambridge University Press, New York, 2002.
[116] A. I. Chumakov, I. Sergueev, U. van Burck, W. Schirmacher, T. Asthalter, R. Ru er, O. Leupold, and W. Petry. Collective nature of the boson peak and universal transboson dynamics of glasses. Phys. Rev. Lett., 92:245508, 2004.
[117] C. Tomaras, B. Schmid, and W. Schirmacher. Replica eld theory for anharmonic sound attenuation in glasses. J. Non-Cryst. Solids., 357:542, 2011.
[118] A. G. Kalampounias, S. N. Yannopoulos, and G. N. Papatheodorou. A hightemperature Raman spectroscopic investigation of the potassium tetrasilicate in glassy, supercooled, and liquid states. J. Chem. Phys., 125:164502, 2006.
[119] S. Alexander. Vibrations of fractals and scattering of light from aerogels. Phys. Rev. B, 40:7953, 1989.
[120] W. Schirmacher and G. Diezemann. Propagation and localisation of vibrational modes in 3-dimensional disordered systems: The binary force constant model. Ann. Phys. (Leipzig), 8:727, 1999.
[121] J.L. Feldman, M.D. Kluge, P.B. Allen, and F. Wooten. Thermal conductivity and localization in glasses: numerical study of a model of amorphous silicon. Phys. Rev. B, 48:12589, November 1993.
[124] S.N. Taraskin, J.J. Ludlam, G. Natarajan, and S.R. Elliott. Propagation, hybridization and localization of vibrational excitations in disordered materials. Philosophical Magazine B, 82:197, 2002.
[125] W. Schirmacher and M. Wagener. Vibrational anomalies and phonon localization in glasses. Solid State Communications, 86:597, 1993.
[126] T. Nakayama, K. Yakubo, and R. L. Orbach. Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations. Rev. Mod. Phys., 66:381, 1994.
[144] P. Biswas, P. Cain, R. A. Romer, and M. Schreiber. O -diagonal disorder in the Anderson model of localization. phys. stat. sol. (b), 218:205, 2000. ArXiv: cond-mat/0001315.
[145] P. Cain. Das Anderson-Modell der Lokalisierung mit nichtdiagonaler Unordnung. Master's thesis, Technische Universitat Chemnitz, December 1998.
[148] F. Haake. Quantum Signatures of Chaos. Springer, Berlin, 2nd edition, 1992.
[160] B.B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman, 1983.
[161] H. V. Koch. Classics on Fractals. Addison-Wesley, Reading MA, 1993.
[162] B. Veress and J. Szigethy, editors. Horizons in Earth Science Research, volume 3. Nova Science Pub Incorporated, Hauppauge, NY, USA, 2011. arXiv:1104.4991v1.
[173] A. Mildenberger and F. Evers. Wave function statistics at the symplectic twodimensional Anderson transition: Bulk properties. Phys. Rev. B, 75:041303, 2007.
[174] L. J. Vasquez. High Precision Multifractal Analysis in the 3D Anderson Model of Localisation. PhD thesis, University of Warwick, 2010.
[175] Alberto Rodriguez, Louella J. Vasquez, and Rudolf A. Romer. Multifractal analysis with the probability density function at the three-dimensional Anderson transition. Phys. Rev. Lett., 102:106406, 2009. cond-mat:0812.1654.