Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kumar, S.; Cartron, M.L.; Mullin, N.; Qian, P.; Leggett, G.J.; Hunter, C.N.; Hobbs, J.K. (2016)
Publisher: American Chemical Society
Journal: ACS Nano
Languages: English
Types: Article
Subjects: high-speed AFM, ATP-synthase (ATPase), RC-LH1-PufX, Rhodobacter sphaeroides, chromatophores, native curved membranes, light-harvesting 2 (LH2), Article
The function of bioenergetic membranes is strongly influenced by the spatial arrangement of their constituent membrane proteins. Atomic force microscopy (AFM) can be used to probe protein organization at high resolution, allowing individual proteins to be identified. However, previous AFM studies of biological membranes have typically required that curved membranes are ruptured and flattened during sample preparation, with the possibility of disruption of the native protein arrangement or loss of proteins. Imaging native, curved membranes requires minimal tip–sample interaction in both lateral and vertical directions. Here, long-range tip–sample interactions are reduced by optimizing the imaging buffer. Tapping mode AFM with high-resonance-frequency small and soft cantilevers, in combination with a high-speed AFM, reduces the forces due to feedback error and enables application of an average imaging force of tens of piconewtons. Using this approach, we have imaged the membrane organization of intact vesicular bacterial photosynthetic “organelles”, chromatophores. Despite the highly curved nature of the chromatophore membrane and lack of direct support, the resolution was sufficient to identify the photosystem complexes and quantify their arrangement in the native state. Successive imaging showed the proteins remain surprisingly static, with minimal rotation or translation over several-minute time scales. High-order assemblies of RC-LH1-PufX complexes are observed, and intact ATPases are successfully imaged. The methods developed here are likely to be applicable to a broad range of protein-rich vesicles or curved membrane systems, which are an almost ubiquitous feature of native organelles.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Butt, H. J.; Downing, K. H.; Hansma, P. K. Imaging the Membrane Protein Bacteriorhodopsin with the Atomic Force Microscope. Biophys. J. 1990, 58, 1473−1480.
    • (2) Scheuring, S.; Nevo, R.; Liu, L.-N.; Mangenot, S.; Charuvi, D.; Boudier, T.; Prima, V.; Hubert, P.; Sturgis, J. N.; Reich, Z. The Architecture of Rhodobacter sphaeroides Chromatophores. Biochim.
    • Biophys. Acta, Bioenerg. 2014, 1837, 1263−1270.
    • (3) Tucker, J. D.; Siebert, C. A.; Escalante, M.; Adams, P. G.; Olsen, J. D.; Otto, C.; Stokes, D. L.; Hunter, C. N. Membrane Invagination in Rhodobacter sphaeroides Is Initiated at Curved Regions of the Cytoplasmic Membrane, Then Forms Both Budded and Fully Detached Spherical Vesicles. Mol. Microbiol. 2010, 76, 833−847.
    • (4) Adams, P. G.; Hunter, C. N. Adaptation of Intracytoplasmic Membranes to Altered Light Intensity in Rhodobacter sphaeroides.
    • Biochim. Biophys. Acta, Bioenerg. 2012, 1817, 1616−1627.
    • (5) Hunter, C. N.; Bergström, H.; Van Grondelle, R.; Sundström, V.
    • Energy-Transfer Dynamics in Three Light-Harvesting Mutants of Rhodobacter sphaeroides: A Picosecond Spectroscopy Study. Biochemistry 1990, 29, 3203−3207.
    • (6) Cartron, M. L.; Olsen, J. D.; Sener, M.; Jackson, P. J.; Brindley, A.
    • Biophys. Acta, Bioenerg. 2014, 1837, 1769−1780.
    • (7) Alberts, B.; Johnson, A.; Lewis, J. Mol. Biol. Cell, 4th ed.; Garland Science, 2002.
    • (8) Qian, P.; Bullough, P. A.; Hunter, C. N. Three-Dimensional Reconstruction of a Membrane-Bending Complex: The RC-LH1-PufX Core Dimer of Rhodobacter sphaeroides. J. Biol. Chem. 2008, 283, 14002−14011.
    • (9) Şener, M. K.; Olsen, J. D.; Hunter, C. N.; Schulten, K. AtomicLevel Structural and Functional Model of a Bacterial Photosynthetic Membrane Vesicle. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 15723− 15728.
    • (10) Chandler, D. E.; Strümpfer, J.; Sener, M.; Scheuring, S.; Schulten, K. Light Harvesting by Lamellar Chromatophores in Rhodospirillum photometricum. Biophys. J. 2014, 106, 2503−2510.
    • (11) Hansma, P.; Cleveland, J.; Radmacher, M.; Walters, D.; Hillner, P.; Bezanilla, M.; Fritz, M.; Vie, D.; Hansma, H.; Prater, C. Tapping Mode Atomic Force Microscopy in Liquids. Appl. Phys. Lett. 1994, 64, 1738−1740.
    • (12) Zhong, Q.; Inniss, D.; Kjoller, K.; Elings, V. Fractured Polymer/ Silica Fiber Surface Studied by Tapping Mode Atomic Force Microscopy. Surf. Sci. Lett. 1993, 290, L688−L692.
    • (13) Walters, D.; Cleveland, J.; Thomson, N.; Hansma, P.; Wendman, M.; Gurley, G.; Elings, V. Short Cantilevers for Atomic Force Microscopy. Rev. Sci. Instrum. 1996, 67, 3583−3590.
    • (14) Leung, C.; Bestembayeva, A.; Thorogate, R.; Stinson, J.; Pyne, A.; Marcovich, C.; Yang, J.; Drechsler, U.; Despont, M.; Jankowski, T.; Tschöpe, M.; Hoogenboom, B. W. Atomic Force Microscopy with Nanoscale Cantilevers Resolves Different Structural Conformations of the DNA Double Helix. Nano Lett. 2012, 12, 3846−3850.
    • (15) Viani, M. B.; Schaf̈fer, T. E.; Chand, A.; Rief, M.; Gaub, H. E.; Hansma, P. K. Small Cantilevers for Force Spectroscopy of Single Molecules. J. Appl. Phys. 1999, 86, 2258−2262.
    • (16) Müller, D. J.; Fotiadis, D.; Scheuring, S.; Müller, S. A.; Engel, A.
    • Electrostatically Balanced Subnanometer Imaging of Biological Specimens by Atomic Force Microscope. Biophys. J. 1999, 76, 1101− 1111.
    • (17) San Paulo, A.; García, R. Tip-Surface Forces, Amplitude, and Energy Dissipation in Amplitude-Modulation (Tapping Mode) Force Microscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 64, 193411.
    • (18) Rodrıguez, T. R.; García, R. Tip Motion in Amplitude Modulation (Tapping-Mode) Atomic-Force Microscopy: Comparison between Continuous and Point-Mass Models. Appl. Phys. Lett. 2002, 80, 1646−1648.
    • (19) Şener, M.; Strümpfer, J.; Hsin, J.; Chandler, D.; Scheuring, S.; Hunter, C. N.; Schulten, K. Förster Energy Transfer Theory as Reflected in the Structures of Photosynthetic Light-Harvesting Systems. ChemPhysChem 2011, 12, 518−531.
    • (20) Scheuring, S.; Sturgis, J. N. Dynamics and Diffusion in Photosynthetic Membranes from Rhodospirillum photometricum.
    • Biophys. J. 2006, 91, 3707−3717.
    • (21) Olsen, J. D.; Tucker, J. D.; Timney, J. A.; Qian, P.; Vassilev, C.; Hunter, C. N. The Organization of LH2 Complexes in Membranes from Rhodobacter sphaeroides. J. Biol. Chem. 2008, 283, 30772−30779.
    • (22) Liu, L.-N.; Duquesne, K.; Sturgis, J. N.; Scheuring, S. Quinone Pathways in Entire Photosynthetic Chromatophores of Rhodospirillum photometricum. J. Mol. Biol. 2009, 393, 27−35.
    • (23) Esser, L.; Elberry, M.; Zhou, F.; Yu, C. A.; Yu, L.; Xia, D.
    • Inhibitor-Complexed Structures of the Cytochrome bc1 from the Photosynthetic Bacterium Rhodobacter sphaeroides. J. Biol. Chem. 2008, 283, 2846−57.
    • (24) Qian, P.; Papiz, M. Z.; Jackson, P. J.; Brindley, A. A.; Ng, I. W.; Olsen, J. D.; Dickman, M. J.; Bullough, P. A.; Hunter, C. N. ThreeDimensional Structure of the Rhodobacter sphaeroides RC-LH1-PufX Complex: Dimerization and Quinone Channels Promoted by PufX.
    • Biochemistry 2013, 52, 7575−7585.
    • (25) Adams, P. G.; Mothersole, D. J.; Ng, I. W.; Olsen, J. D.; Hunter, C. N. Monomeric RC−LH1 Core Complexes Retard LH2 Assembly and Intracytoplasmic Membrane Formation in PufX-Minus Mutants of Rhodobacter sphaeroides. Biochim. Biophys. Acta, Bioenerg. 2011, 1807, 1044−1055.
    • (26) Ng, I. W.; Adams, P. G.; Mothersole, D. J.; Vasilev, C.; Martin, E. C.; Lang, H. P.; Tucker, J. D.; Hunter, C. N. Carotenoids Are Essential for Normal Levels of Dimerisation of the RC-LH1-PufX Core Complex of Rhodobacter sphaeroides: Characterisation of R-26 as a crtB (Phytoene Synthase) Mutant. Biochim. Biophys. Acta, Bioenerg.
    • (27) Chenchiliyan, M.; Timpmann, K.; Jalviste, E.; Adams, P. G.; Hunter, C. N.; Freiberg, A. Dimerization of Core Complexes as an Efficient Strategy for Energy Trapping in Rhodobacter sphaeroides.
    • Biochim. Biophys. Acta, Bioenerg. 2016, 1857, 634−642.
    • (28) Beekman, L. M.; van Mourik, F.; Jones, M. R.; Visser, H. M.; Hunter, C. N.; van Grondelle, R. Trapping Kinetics in Mutants of the Photosynthetic Purple Bacterium Rhodobacter sphaeroides: Influence of the Charge Separation Rate and Consequences for the Rate-Limiting Step in the Light-Harvesting Process. Biochemistry 1994, 33, 3143− 3147.
    • (29) Bahatyrova, S.; Frese, R. N.; Siebert, C. A.; Olsen, J. D.; van der Werf, K. O.; van Grondelle, R.; Niederman, R. A.; Bullough, P. A.; Otto, C.; Hunter, C. N. The Native Architecture of a Photosynthetic Membrane. Nature 2004, 430, 1058−1062.
    • (30) Stock, D.; Leslie, A. G. W.; Walker, J. E. Molecular Architecture of the Rotary Motor in ATP Synthase. Science 1999, 286, 1700−1705.
    • (31) Ott, M.; Amunts, A.; Brown, A. Organization and Regulation of Mitochondrial Protein Synthesis. Annu. Rev. Biochem. 2016, 85, 77− 101.
    • (32) Ciancaglini, P.; Simaõ, A. M. S.; Bolean, M.; Millań, J. L.; Rigos, C. F.; Yoneda, J. S.; Colhone, M. C.; Stabeli, R. G. Proteoliposomes in Nanobiotechnology. Biophys. Rev. 2012, 4, 67−81.
    • (33) Bailey, R. G.; Turner, R. D.; Mullin, N.; Clarke, N.; Foster, S. J.; Hobbs, J. K. The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus. Biophys. J. 2014, 107, 2538−45.
    • (34) Müller, D. J.; Amrein, M.; Engel, A. Adsorption of Biological Molecules to a Solid Support for Scanning Probe Microscopy. J. Struct.
    • Biol. 1997, 119, 172−188.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article