Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Serpell, M.; Smith, J. (2010)
Publisher: Massachusetts Institute of Technology Press (MIT Press)
Languages: English
Types: Article
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abbass, H. (2002). The self-adaptive Pareto differential evolution algorithm. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC'2002), Vol. 1, pp. 831-836.
    • Applegate, D. L., Bixby, R. E., Chva´tal, V., and Cook, W. (1996). Concorde TSP solver: http:// www.tsp.gatech.edu/concorde.html.
    • Ba¨ck, T. (1992). Self adaptation in genetic algorithms. In F. Varela and P. Bourgine (Eds.), Toward a Practice of Autonomous Systems: Proceedings of the 1st European Conference on Artificial Life, pp. 263-271.
    • Ba¨ck, T., Eiben, A. E., and van der Vaart, N. A. L. (2000). An empirical study on GAs without parameters. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel (Eds.), Proceedings of the 6th Conference on Parallel Problem Solving from Nature, Vol. 1917 of LNCS, pp. 315-324.
    • Beyer, H.-G. (2001). The theory of evolution strategies. Berlin: Springer.
    • Castillo, O., and Trujillo, L. (2005). Multiple objective optimization genetic algorithms for path planning in autonomous mobile robots. International Journal of Computers, Systems and Signals, 6(1), 48-63.
    • Cobb, H., and Grefenstette, J. (1993). Genetic algorithms for tracking changing environments. In S. Forrest (Ed.), Proceedings of the 5th International Conference on Genetic Algorithms, pp. 523-530.
    • Cowling, P., Kendall, G., and Soubeiga, E. (2001). A hyperheuristic approach to scheduling a sales summit. Lecture Notes in Computer Science, 2079:176-195.
    • Eiben, A., Michalewicz, Z., Schoenauer, M., and Smith, J. (2007). Parameter control in evolutionary algorithms. In F. G. Lobo, C. F. Lima, and Z. Michalewicz (Eds.), Parameter Setting in Evolutionary Algorithms, Vol. 54 of Studies in Computational Intelligence (pp. 19-46). Berlin: Springer Verlag.
    • Eiben, A. E., Schut, M. C., and de Wilde, A. R. (2006). Is self-adaptation of selection pressure and population size possible? A case study. In T. P. Runarsson et al. (Eds.) Proceedings of the 9th Annual Conference on Parallel Problem Solving from Nature, Vol. 4193 of LNCS, pp. 900-909.
    • Eiben, A., and Smith, J. (2003). Introduction to evolutionary computation. Berlin: Springer.
    • Friesleben, B., and Merz, P. (1996). A genetic local search algorithm for solving the symmetric and assymetric travelling salesman problem. In ICEC-96, pp. 616-621.
    • Glickman, M., and Sycara, K. (1999). Comparing mechanisms for evolving evolvability. In A. Wu (Ed.), Proceedings of the 1999 Genetic and Evolutionary Computation Conference Workshop Program.
    • Glickman, M., and Sycara, K. (2000). Reasons for premature convergence of self-adaptating mutation rates. In 2000 Congress on Evolutionary Computation (CEC'2000), pp. 62-69.
    • Hansen, P., and Mladenovic`, N. (1998). An introduction to variable neighborhood search. In S. Voß, S. Martello, I. Osman, and C. Roucairol (Eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Proceedings of MIC 97 Conference. Dordrecht, The Netherlands: Kluwer Academic Publishers.
    • Hart, W., Krasnogor, N., and Smith, J. (2004). Editorial introduction, special issue on memetic algorithms. Evolutionary Computation, 12(3):v-vi.
    • Julstrom, B. (1997). Adaptive operator probabilities in a genetic algorithm that applies three operators. In Proceedings of the 1997 ACM Symposium on Applied Computing, pp. 233-238.
    • Krasnogor, N., Blackburne, B., Burke, E., and Hirst, J. (2002). Multimeme algorithms for protein structure prediction. In J. M. Guervos, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas, and H.-P. Schwefel (Eds.), Proceedings of the 7th Conference on Parallel Problem Solving from Nature, Vol. 2439 in Lecture Notes in Computer Science, pp. 769-778.
    • Meyer-Nieberg, S., and Beyer, H.-G. (2007). Self adaptation in evolutionary algorithms. In F. G. Lobo, C. F. Lima, and Z. Michalewicz (Eds.), Parameter Setting in Evolutionary Algorithms, pp. 47-76. Berlin: Springer.
    • Oltean, M. (2005). Evolving evolutionary algorithms using linear genetic programming. Evolutionary Computation, 13(3):387-410.
    • Ong, Y., Lim, M., Zhu, N., and Wong, K. (2006). Classification of adaptive memetic algorithms: A comparative study. IEEE Transactions on Systems, Man and Cybernetics Part B, 36(1):141-152.
    • Preuss, M., and Bartz-Beielstein, T. (2007). Sequential parameter optimisation applied to self-adaptation for binary-coded evolutionary algorithms. In F. G. Lobo, C. F. Lima, and Z. Michalewicz (Eds.), Parameter Setting in Evolutionary Algorithms, pages 91-120. Berlin: Springer.
    • Reeves, C. (1999). Landscapes, operators and heuristic search. Annals of Operations Research, 86:473-490.
    • Reinelt, G. (1991). Tsplib: http://www.iwr.uni-heidelberg.de/groups/comopt/software/ tsplib95/.
    • Rudolph, G. (2001). Self-adaptive mutations may lead to premature convergence. IEEE Transactions on Evolutionary Computation, 5:410-414.
    • Schaffer, J., and Morishima, A. (1987). An adaptive crossover distribution mechanism for genetic algorithms. In J. Grefenstette (Ed.), Proceedings of the 2nd International Conference on Genetic Algorithms and Their Applications, pp. 36-40.
    • Schiavinotto, T., and Stutzle, T. (2007). A review of metrics on permutations for search landscape analysis. Computers and Operations Research, 34(10):3143-3153.
    • Schwefel, H.-P. (1981). Numerical optimization of computer models. New York: Wiley.
    • Smith, J. (2001). Modelling GAs with self-adaptive mutation rates. In L. Spector, E. Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 599-606.
    • Smith, J. (2002). On appropriate adaptation levels for the learning of gene linkage. Journal of Genetic Programming and Evolvable Machines, 3(2):129-155.
    • Smith, J. (2003). Parameter perturbation mechanisms in binary coded GAs with self-adaptive mutation. In K. De Jong, R. Poli, and J. Rowe (Eds.), Foundations of Genetic Algorithms 7, pages 329-346. Morgan Kauffman.
    • Smith, J. (2007a). Co-evolving memetic algorithms: A review and progress report. IEEE Transactions in Systems, Man and Cybernetics, Part B, 37(1):6-17.
    • Smith, J. (2007b). On replacement strategies in steady state evolutionary algorithms. Evolutionary Computation, 15(1):29-59.
    • Smith, J., and Fogarty, T. (1995). An adaptive poly-parental recombination strategy. In T. Fogarty (Ed.), Evolutionary Computing 2 (pp. 48-61). Berlin: Springer.
    • Smith, J., and Fogarty, T. (1996). Self adaptation of mutation rates in a steady state genetic algorithm. In ICEC-96, pp. 318-323.
    • Spears, W., and Anand, V. (1991). A study of crossover operators in genetic programming. In Proceedings of the 6th International Symposium on Methodologies for Intelligent Systems, pp. 409-418.
    • Stephens, C. R., Garcia Olmedo, I., Moro Vargas, J., and Waelbroeck, H. (1998). Artificial Life, 4:183-201.
    • Stone, C., and Smith, J. (2002). Strategy parameter variety in self-adaption. In W. Langdon, E. Cant u´-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke, and N. Jonoska (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002), pp. 586-593.
    • Thierens, D. (2005). An adaptive pursuit strategy for allocating operator probabilities. In Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1539-1546.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article