LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Liu, Tao (2014)
Publisher: Royal Society
Languages: English
Types: Article
Subjects:
The constitutive model presented in this article aims to describe the main bio-chemo-mechanical features involved in the contractile response of smooth muscle cells, in which the biochemical response is modelled by extending the four-state Hai–Murphy model to isotonic contraction of the cells and the mechanical response is mainly modelled based on the phosphorylation-dependent hyperbolic relation between isotonic shortening strain rate and tension. The one-dimensional version of the model is used to simulate shortening-induced deactivation with good agreement with selected experimental measurements. The results suggest that the Hai–Murphy biochemical model neglects the strain rate effect on the kinetics of cross-bridge interactions with actin filaments in the isotonic contractions. The two-dimensional version and three-dimensional versions of the model are developed using the homogenization method under finite strain continuum mechanics framework. The two-dimensional constitutive model is used to simulate swine carotid media strips under electrical field stimulation, experimentally investigated by Singer and Murphy, and contraction of a hollow airway and a hollow arteriole buried in a soft matrix subjected to multiple calcium ion stimulations. It is found that the transverse deformation may have significant influence on the response of the swine carotid medium. In both cases, the orientation of the maximal value of attached myosin is aligned with the orientation of maximum principal stress.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. 2003 Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484- 1489. (doi:10.1073/pnas.0235407100)
    • 2. Alford PW, Nesmith AP, Seywerd JN, Grosberg A, Parker KK. 2011 Vascular smooth muscle contractility depends on cell shape. Integr. Biol. 3, 1063-1070. (doi:10.1039/c1ib00061f)
    • 3. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS. 2005 Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA 102, 11 594-11 599. (doi:10.1073/pnas.0502575102)
    • 4. Mohrdieck C, Wanner A, Roos W, Roth A, Sackmann E, Spatz JP, Arzt E. 2005 A theoretical description of elastic pillar substrates in biophysical experiments. Chem. Phys. Chem. 6, 1492- 1498. (doi:10.1002/cphc.200500109)
    • 5. Deshpande VS, McMeeking RM, Evans AG. 2006 A bio-chemo-mechanical model for cell contractility. Proc. Natl Acad. Sci. USA 103, 14 015-14 020. (doi:10.1073/pnas.0605837103)
    • 6. McGarry P, Chen CS, Deshpande VS, McMeeking RM, Evans AG. 2009 Simulation of the contractile response of cells on an array of micro-posts. Phil. Trans. R. Soc. A 367, 3477-3497. (doi:10.1098/rsta.2009.0097)
    • 7. Wei Z, Deshpande VS, McMeeking RM, Evans AG. 2006 Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. ASME J. Biomech. Eng. 130, 031009. (doi:10.1115/1.2907745)
    • 8. Ronan W, Deshpande VS, McMeeking RM, McGarry JP. In press. Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion. Biomech. Model. Mechanobiol.
    • 9. Ronan W, Deshpande VS, McMeeking RM, McGarry JP. 2012 Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells. J. Mech. Behav. Biomed. Mater. 14, 143-157. (doi:10.1016/j.jmbbm.2012.05.016)
    • 10. Dowling EP, Ronan W, Ofek G, Deshpande VS, McMeeking RM, Athanasiou KA, MaGarry JP. 2012 The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation. J. R. Soc. Interface 9, 3469-3479. (doi:10.1098/rsif.2012.0428)
    • 11. Dowling EP, Ronan WKA, MaGarry JP. 2012 Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. Acta Biomater. 9, 5943-5955. (doi:10.1016/j.actbio.2012.12.021)
    • 12. Hai CM, Murphy RA. 1988 Cross-bridge phosphorylation and regulation of latch state in smooth muscle. J. Appl. Physiol. 254, C99-C106.
    • 13. Bursztyn L, Eytan O, Jaffa AJ, Elad D. 2007 Mathematical model of excitation- contraction in a uterine smooth muscle cell. Am. J. Physiol. 292, C1816-C1829. (doi:10.1152/ajpcell.00478.2006)
    • 14. Murtada S, Kroon M, Holzapfel GA. 2010 A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech. Model. Mechanobiol. 9, 749-762. (doi:10.1007/s10237-010-0211-0)
    • 15. Murtada S, Kroon M, Holzapfel GA. 2010 Modeling the dispersion effects of contratile fibers in smooth muscles. J. Mech. Phys. Solids 58, 2065-2082. (doi:10.1016/j.jmps.2010.09.003)
    • 16. Murtada S, Arner A, Holzapfel GA. 2012 Experiments and mechanochemical modeling of smooth muscle contraction: significance of filament overlap. J. Theor. Biol. 297, 176-186. (doi:10.1016/j.jtbi.2011.11.012)
    • 17. Stalhand J, Klarbring A, Holzapfel GA. 2011 A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. J. Theor. Biol. 268, 120-130. (doi:10.1016/j.jtbi.2010.10.008)
    • 18. Wang I, Politi AZ, Tania N, Bai Y, Sanderson MJ, Sneyd J. 2008 A mathematical model of airway and pulmonary arteriole smooth muscle. Biophys. J. 94, 2053-2064. (doi:10.1529/biophysj.107.113977)
    • 19. Maggio CD, Jennings SR, Robichaux JL, Stapor PC, Hyman JM. 2012 A modified HaiMurphy model of uterine smooth muscle contraction. Bull. Math. Biol. 74, 143-158. (doi:10.1007/s11538-011-9681-1)
    • 20. Rembold CM, Murphy RA. 1990 Latch-bridge model in smooth muscle: [Ca2+], can quantitatively predict stress. Am. J. Physiol. 259, C251-C257.
    • 21. Murphy RA. 1988 Muscle cells of hollow organs. News Physiol. Sci. 3, 124-128.
    • 22. Bates JH, Lauzon AM. 2007 Parenchymal tethering, airway wall stiffness, and the dynamics of bronchoconstriction. J. Appl. Physiol. 102, 1912-1920. (doi:10.1152/japplphysiol.00980.2006)
    • 23. Hill AV. 1938 The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126, 136-195. (doi:10.1098/rspb.1938.0050)
    • 24. Dillon PF, Murphy RA. 1982 Tonic force maintenance with reduced shortening velocity in arterial smooth muscle. Am. J. Physiol. 242, C102-C108.
    • 25. Barany M. 1967 ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50, 197-218. (doi:10.1085/jgp.50.6.197)
    • 26. Hai CM, Murphy RA. 1989 Ca2+, crossbridge phosphorylation, and contraction. Annu. Rev. Physiol. 51, 285-298. (doi:10.1146/annurev.ph.51.030189.001441)
    • 27. Kamm KE, Stull JT. 1985 Myosin phosphorylation, force and maximal shortening velocity in neutrally stimulated tracheal smooth muscle. Am. J. Physiol. 249, C238-C247.
    • 28. Hanks BS, Stephens NL. 1981 Mechanics and energetics of lengthening of active airway smooth muscle. Am. J. Physiol. 241, C42-C46.
    • 29. Dillon PF, Aksoy MO, Driska SP, Murphy RA. 1981 Myosin phosphorylation and the crossbridge cycle in arterial smooth muscle. Science 211, 495-497. (doi:10.1126/science.6893872)
    • 30. Ji G, Barsotti RJ, Feldman ME, Kotlikoff MI. 2002 Stretch-induced calcium release in smooth muscle. J. Gen. Physiol. 119, 533-543. (doi:10.1085/jgp.20028514)
    • 31. Nemat-Nasser S. 1999 Averaging theorems in finite deformation plasticity. Mech. Mater. 31, 493-523. (doi:10.1016/S0167-6636(98)00073-8)
    • 32. Ogden RW. 1978 Nearly isochoric elastic deformations: application to rubberlike solids. J. Mech. Phys. Solids 26, 37-57. (doi:10.1016/0022-5096(78)90012-1)
    • 33. Curtain ME, Fried E, Anand L. 2010 The mechanics and thermodynamics of continua. New York, NY: Cambridge University Press.
    • 34. Holzapfei TC, Gasser TC, Ogden RW. 2000 A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1-48. (doi:10.1023/ A:1010835316564)
    • 35. ABAQUS, Inc. 2011 ABAQUS User's manual, v. 6.11. www.simulia.com
    • 36. Herzog W, Leonard T. 1997 Depression of cat soleus forces following isokinetic shortening. J. Biomech. 30, 865-872. (doi:10.1016/S0021-9290(97)00046-8)
    • 37. de Ruiter CJ, De Haan A, Jones DA, Sargeant AJ. 1998 Shortening induced force depression in human adductor pollicis muscle. J. Physiol. 507, 583-591. (doi:10.1111/j.1469-7793.1998. 583bt.x)
    • 38. Colomo F, Poggesi C, Tesi C. 1994 Force responses to rapid length changes in single intact cells from frog heart. J. Physiol. 475, 347-350.
    • 39. Gunst S. 1989 Effects of muscle length and load on intracellular Ca2+ in tracheal smooth muscle. Am. J. Physiol. 256, C807-C812.
    • 40. Meiss R. 1993 Persistent mechanical effects of decreasing length during isometric contraction of ovarian ligament smooth muscle. J. Muscle Res. Cell Motil. 14, 205-218. (doi:10.1007/BF00115455)
    • 41. Asselt EV, Pel JJM, Mastrigt RV. 2007 Shortening induced effects on force (re)development in pig urinary smooth muscle. J. Biomech. 40, 1534-1540. (doi:10.1016/j.jbiomech.2006.07.012)
    • 42. Ruegg JC. 1965 Physiologie and biochemie des sperrtnus. Helv. Physiol. Pharmacol. Acta Suppl. XVI, 1-76.
    • 43. Yu SN, Crago PE, Chiel HJ. 1994 Biomechanics of aplysia I2 muscle. Soc. Neurosci. Abstr. 20, 1597.
    • 44. Yu SN, Crago PE, Chiel HJ. 1997 A non-isometric kinetic model for smooth muscle. Am. J. Physiol. 272, C1025-C1039.
    • 45. Singer HA, Murphy RA. 1987 Maximal rates of activation on electrically stimulated swine carotid media. Circ. Res. 60, 438-445. (doi:10.1161/01.RES.60.3.438)
    • 46. Hai CM, Murphy RA. 1988 Regulation of shortening velocity by cross-bridge phosphorylation in smooth muscle. Am. J. Physiol. 255, C86-C94.
    • 47. Bai Y, Sanderson MJ. 2006 Modulation of Ca2+ sensitivity of airway smooth muscle cells in murine lung slices. Am. J. Physiol. 291, L208-L221.
    • 48. Perez JF, Sanderson MJ. 2005 The contraction of smooth muscle cells of intrapulmonary arterioles is determined by the frequency of Ca2+ oscillations induced by 5-HT and KCl. J. Gen. Physiol. 125, 555-567. (doi:10.1085/jgp.200409217)
    • 49. Rembold CM, Murphy RA. 1990 Muscle length, shortening, myoplasmic [Ca2+], and activation of arterial smooth muscle. Circ. Res. 66, 1354-1361. (doi:10.1161/01.RES.66.5.1354)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article