Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McCarroll, Julia
Languages: English
Types: Doctoral thesis
Subjects: GE
In a recent discussion of research priorities for palaeoecology, it was suggested that palaeoecological data can be applied and used to inform nature conservation practice. The present study exemplifies this approach. It was conducted on three degraded blanket mires in Yorkshire, UK, in collaboration with a field-based moorland restoration agency. High-resolution, multiproxy palaeoecological analyses on peat cores from Mossdale Moor, Oxenhope Moor and West Arkengarthdale reconstructed mid- to late-Holocene vegetation changes. Humification, pollen, plant macrofossil and charcoal analyses carried out throughout the peat profile at each site show marked changes in species composition and indicate their potential causes. Results suggest that human clearance in the Mesolithic–Neolithic transition may have initiated peat growth at Mossdale Moor, making this landscape ‘semi-natural’ in its origin. Further human-induced changes are identified at 1300 cal. years BP at Mossdale Moor, 2100 cal. BP at Oxenhope Moor and c. 3250 cal. BP at West Arkengarthdale, most likely deliberate clearance by fire. Increased anthropogenic activity is identified at each site since the industrial revolution where monocots and Eriophorum vaginatum increase, consistent with rises in charcoal at Mossdale Moor and West Arkengarthdale. These are interpreted as recent (<300 years) management practices using burning to encourage browse on the moor. Climatic deteriorations have also been identified, with wetter conditions at 5000 cal. BP and 4400 cal. BP at West Arkengarthdale and Oxenhope Moor, c. 2400 cal. BP at Mossdale Moor and West Arkengarthdale and the Little Ice Age at each site. It is intended that these long-term ecological histories of the sites, derived using palaeoecological techniques, will be used to inform conservation practice and can help set feasible targets for restoration and conservation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bain, C., Bonn, A., Stoneman, R., Chapman, S., Coupar, A., Evans, M., Gearey, B., Howat, M., Joosten, H. & Keenleyside, C. 2011. IUCN UK Commission of Inquiry on Peatlands. IUCN UK Peatland Programme, Edinburgh.
    • Baker, A., Caseldine, C. J., Gilmour, M. A., Charman, D., Proctor, C. J., Hawkesworth, C. J. & Phillips, N. 1999. Stalagmite luminescence and peat humification records of palaeomoisture for the last 2500 years. Earth and Planetary Science Letters, 165, 157-162.
    • Barber, K. 1993. Peatlands as scientific archives of past biodiversity. Biodiversity & Conservation, 2, 474-489.
    • Barber, K., Brown, A., Langdon, P. & Hughes, P. 2013. Comparing and crossvalidating lake and bog palaeoclimatic records: a review and a new 5,000 year chironomid-inferred temperature record from northern England. Journal of Paleolimnology, 49, 497-512.
    • Barber, K., Chambers, F., Maddy, D., Stoneman, R. & Brew, J. 1994. A sensitive high-resolution record of late Holocene climatic change from a raised bog in northern England. The Holocene, 4, 198-205.
    • Barber, K. E. 1981. Peat Stratigraphy and Climatic Change: A palaeoecological test of the theory of cyclic peat bog regeneration, Rotterdam, A.A.Balkema.
    • Barber, K. E., Chambers, F. M. & Maddy, D. 2003. Holocene palaeoclimates from peat stratigraphy: macrofossil proxy climate records from three oceanic raised bogs in England and Ireland. Quaternary Science Reviews, 22, 521- 539.
    • Barber, K. E., Chambers, F. M. & Maddy, D. 2004. Late Holocene climatic history of northern Germany and Denmark: peat macrofossil investigations at Dosenmoor, Schleswig‐ Holstein, and Svanemose, Jutland. Boreas, 33, 132-144.
    • Barber, K. E. & Langdon, P. G. 2007. What drives the peat-based palaeoclimate record? A critical test using multi-proxy climate records from northern Britain. Quaternary Science Reviews, 26, 3318-3327.
    • Bartley, D. D. 1975. Pollen Analytical Evidence for Prehistoric Forest Clearance in the Upland Area West of Rishworth, W. Yorkshire. New Phytologist, 74, 375-381.
    • Bergeron, Y., Cyr, D., Girardin, M. P. & Carcaillet, C. 2011. Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. International Journal of Wildland Fire, 19, 1127-1139.
    • Bingham, E. M., Mcclymont, E. L., Väliranta, M., Mauquoy, D., Roberts, Z., Chambers, F. M., Pancost, R. D. & Evershed, R. P. 2010. Conservative composition of n-alkane biomarkers in Sphagnum species: Implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Organic Geochemistry, 41, 214-220.
    • Birks, H. H. & Birks, H. J. B. 2000. Future Uses of Pollen Analysis Must Include Plant Macrofossils. Journal of Biogeography, 27, 31-35.
    • Birks, H. J. B. 1996. Contributions of Quaternary palaeoecology to nature conservation. Journal of Vegetation Science, 7, 89-98.
    • Birks, H. J. B. 2012. Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. International Journal of Biodiversity science, Ecosystem services & Management, 8, 292-304.
    • Blaauw, M., Van Geel, B. & Van Der Plicht, J. 2004. Solar forcing of climatic change during the mid-Holocene: indications from raised bogs in The Netherlands. Holocene, 14, 35-44.
    • Blundell, A. & Barber, K. 2005. A 2800-year palaeoclimatic record from Tore Hill Moss, Strathspey, Scotland: the need for a multi-proxy approach to peatbased climate reconstructions. Quaternary Science Reviews, 24, 1261- 1277.
    • Blundell, A. & Holden, J. 2015. Using palaeoecology to support blanket peatland management. Ecological Indicators, 49, 110-120.
    • Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., Priore, P., Cullen, H., Hajdas, I. & Bonani, G. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278, 1257-1266.
    • Booth, R. K., Lamentowicz, M. & Charman, D. J. 2010. Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies. Mires and Peat, 7, 1-7.
    • Brown, A. 2010. Pollen analysis and planted ancient woodland restoration strategies: a case study from the Wentwood, southeast Wales, UK. Vegetation History and Archaeobotany, 19, 79-90.
    • Caseldine, C., Thompson, G., Langdon, C. & Hendon, D. 2005. Evidence for an extreme climatic event on Achill Island, Co. Mayo, Ireland around 5200- 5100 cal. yr BP. Journal of Quaternary Science, 20, 169-178.
    • Chambers, F., Barber, K., Maddy, D. & Brew, J. 1997. A 5500-year proxy-climate and vegetation record from blanket mire at Talla Moss, Borders, Scotland. The Holocene, 7, 391-399.
    • Chambers, F., Cloutman, E., Daniell, J., Mauquoy, D. & Jones, P. 2013a. Longterm ecological study (palaeoecology) to chronicle habitat degradation and inform conservation ecology: an exemplar from the Brecon Beacons, South Wales. Biodiversity and Conservation, 22, 719-736.
    • Chambers, F. M. 2001b. When are trees natural on bogs? In: WHILD, S., MEADE, R. AND DANIELS, J (ed.) Management of Water and Trees on Raised Bogs. Peterborough: English Nature.
    • Chambers, F. M., Booth, R. K., De Vleeschouwer, F., Lamentowicz, M., Le Roux, G., Mauquoy, D., Nichols, J. E. & Van Geel, B. 2012. Development and refinement of proxy-climate indicators from peats. Quaternary International, 268, 21-33.
    • Chambers, F. M. & Charman, D. J. 2004. Holocene environmental change: contributions from the peatland archive. Holocene, 14, 1-6.
    • Chambers, F. M., Cloutman, E. W., Daniell, J. R. G., Mauquoy, D. & Jones, P. S. 2013b. Long-term ecological study (palaeoecology) to chronicle habitat degradation and inform conservation ecology: an exemplar from the Brecon Beacons, South Wales. Biodiversity and Conservation, 22, 719-736.
    • Chambers, F. M. & Daniell, J. R. G. 2011. Conservation and habitat restoration of moorland and bog in the UK uplands: a regional, paleoecological perspective. PAGES Newsletter, 19, 45-47.
    • Chambers, F. M., Mauquoy, D., Brain, S. A., Blaauw, M. & Daniell, J. R. 2007a. Globally synchronous climate change 2800 years ago: proxy data from peat in South America. Earth and Planetary Science Letters, 253, 439-444.
    • Chambers, F. M., Mauquoy, D., Cloutman, E. W., Daniell, J. R. G. & Jones, P. S. 2007b. Recent vegetation history of Drygarn Fawr (Elenydd SSSI), Cambrian Mountains, Wales: implications for conservation management of degraded blanket mires. Biodiversity and Conservation, 16, 2821-2846.
    • Chambers, F. M., Mauquoy, D., Gent, A., Pearson, F., Daniell, J. R. G. & Jones, P. S. 2007c. Palaeoecology of degraded blanket mire in South Wales: Data to inform conservation management. Biological Conservation, 137, 197-209.
    • Chambers, F. M., Mauquoy, D. & Todd, P. A. 1999. Recent rise to dominance of Molinia caerulea in environmentally sensitive areas: new perspectives from palaeoecological data. Journal of Applied Ecology, 36, 719-733.
    • Chambers, F. M., Van Geel, B. & Van Der Linden, M. 2011b. Considerations for the preparation of peat samples for palynology, and for the counting of pollen and non-pollen palynomorphs. Mires and Peat, 7, 1-14.
    • Chapman, S., Buttler, A., Francez, A.-J., Laggoun-Défarge, F., Vasander, H., Schloter, M., Combe, J., Grosvernier, P., Harms, H., Epron, D., Gilbert, D. & Mitchell, E. 2003. Exploitation of Northern Peatlands and Biodiversity Maintenance: A Conflict between Economy and Ecology. Frontiers in Ecology and the Environment, 1, 525-532.
    • Charman, D. J. 2010. Centennial climate variability in the British Isles during the mid-late Holocene. Quaternary Science Reviews, 29, 1539-1554.
    • Charman, D. J., Barber, K. E., Blaauw, M., Langdon, P. G., Mauquoy, D., Daley, T. J., Hughes, P. D. M. & Karofeld, E. 2009. Climate drivers for peatland palaeoclimate records. Quaternary Science Reviews, 28, 1811-1819.
    • Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A., Mauquoy, D., Mitchell, F. J. G., Prentice, I. C., Van Der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J. & Bauer, I. E. 2012. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences Discussions, 9, 14327-14364.
    • Charman, D. J., Blundell, A., Chiverrell, R. C., Hendon, D. & Langdon, P. G. 2006. Compilation of non-annually resolved Holocene proxy climate records: stacked Holocene peatland palaeo-water table reconstructions from northern Britain. Quaternary Science Reviews, 25, 336-350.
    • Charman, D. J., Hendon, D. & Packman, S. 1999. Multiproxy surface wetness records from replicate cores on an ombrotrophic mire: implications for Holocene palaeoclimate records. Journal of Quaternary Science, 14, 451- 463.
    • Charman, D. J. & Pollard, A. J. 1995. Long-term vegetation recovery after vehicle track abandonment on Dartmoor, SW England, U.K. Journal of Environmental Management, 45, 73-85.
    • Chiverrell, R. C., Harvey, A. M. & Foster, G. C. 2007. Hillslope gullying in the Solway Firth - Morecambe Bay region, Great Britain: Responses to human impact and/or climatic deterioration? Geomorphology, 84, 317-343.
    • Chiverrell, R. C., Oldfield, F., Appleby, P. G., Barlow, D., Fisher, E., Thompson, R. & Wolff, G. 2008. Evidence for changes in Holocene sediment flux in Semer Water and Raydale, North Yorkshire, UK. Geomorphology, 100, 70-82.
    • Clapham, A. R., Tutin, T. G. & Warburg, E. F. 1962. Flora of the British Isles, Cambridge :, Cambridge University Press.
    • Clay, G. D. 2009. The Impacts of Heather and Grassland Burning in the Uplands: Creating Sustainable Strategies. University of Durham.
    • Clymo, R., Turunen, J. & Tolonen, K. 1998. Carbon accumulation in peatland. Oikos, 368-388.
    • Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F. & Krebs, P. 2009. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews, 28, 555- 576.
    • Cooper, A., Mccann, T. P. & Hamill, B. 2001. Vegetation regeneration on blanket mire after mechanized peat-cutting. Global Ecology and Biogeography, 10, 275-289.
    • Cubizolle, H., Fassion, F., Argant, J., Latour-Argant, C., Galet, P. & Oberlin, C. 2012. Mire initiation, climatic change and agricultural expansion over the course of the Late-Holocene in the Massif Central mountain range (France): Causal links and implications for mire conservation. Quaternary International, 251, 77-96.
    • Daley, T. & Barber, K. 2012. Multi-proxy Holocene palaeoclimate records from Walton Moss, northern England and Dosenmoor, northern Germany, Daniels, R. E. a. E., A. 1985. Handbook of European Sphagna. Instiutute of Terrestrial Ecology.
    • Dark, P. 2006. Climate deterioration and land-use change in the first millennium BC: perspectives from the British palynological record. Journal of Archaeological Science, 33, 1381-1395.
    • Davies, A. L. & Bunting, J. M. 2010. Applications of Palaeoecology in Conservation. The Open Ecology Journal, 3, 54-67.
    • Davis, S. R. & Wilkinson, D. M. 2004. The conservation management value of testate amoebae as 'restoration' indicators: speculations based on two damaged raised mires in northwest England. Holocene, 14, 135-143.
    • De Vleeschouwer, F., Chambers, F. M. & Swindles, G. T. 2010a. Coring and subsampling of peatlands for palaeoenvironmental research. Mires & Peat, 7, 1-10.
    • De Vleeschouwer, F., Hughes, P. D. M., Nichols, J. E. & Chambers, F. M. 2010b. A Review of Protocols in Peat Palaeoenvironmental Studies. Mires and Peat, 7.
    • Drew, S., Waldron, S., Gilvear, D., Grieve, I., Armstrong, A., Bragg, O., Brewis, F., Cooper, M., Dargie, T., Duncan, C., Harris, L., Wilson, L., Mciver, C., Padfield, R. & Shah, N. 2013. The price of knowledge in the knowledge economy: Should development of peatland in the UK support a research levy? Land Use Policy, 32, 50-60.
    • Evans, C. D., Chadwick, T., Norris, D., Rowe, E. C., Heaton, T. H. E., Brown, P. & Battarbee, R. W. 2014. Persistent surface water acidification in an organic soil-dominated upland region subject to high atmospheric deposition: The North York Moors, UK. Ecological Indicators, 37, Part B, 304-316.
    • Evju, M., Mysterud, A., Austrheim, G. & Økland, R. H. 2006. Selecting herb species and traits as indicators of sheep grazing pressure in a Norwegian alpine habitat. Ecoscience, 13, 459-468.
    • Feurdean, A., Klotz, S., Mosbrugger, V. & Wohlfarth, B. 2008. Pollen-based quantitative reconstructions of Holocene climate variability in NW Romania. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 494-504.
    • Froyd, C. A. & Willis, K. J. 2008. Emerging issues in biodiversity & conservation management: The need for a palaeoecological perspective. Quaternary Science Reviews, 27, 1723-1732.
    • Gale, S. J. & Hoare, P. G. 1991. Quaternary sediments: petrographic methods for the study of unlithified rocks, Belhaven Press London.
    • Garnett, M. H., Ineson, P. & Stevenson, A. C. 2000. Effects of burning and grazing on carbon sequestration in a Pennine blanket bog, UK. Holocene, 10, 729- 736.
    • Gauci, V. a. D., N. 2002. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Global Biogeochemical Cycles, 16, 1-12.
    • Gearey, B. R., Marshall, P. & Hamilton, D. 2009. Correlating archaeological and palaeoenvironmental records using a Bayesian approach: a case study from Sutton Common, South Yorkshire, England. Journal of Archaeological Science, 36, 1477-1487.
    • Gore, A. J. P. 1983. Mires: swamp, bog, fen and moor. Vol. A, Elsevier Scientific Publishing Company.
    • Gorham, E. 1991. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecological Applications, 1, 182-195.
    • Granath, G., Strengbom, J. & Rydin, H. 2012. Direct physiological effects of nitrogen on Sphagnum: a greenhouse experiment. Functional Ecology, 26, 353-364.
    • Grant, M. J., Waller, M. P. & Groves, J. A. 2011. The Tilia decline: vegetation change in lowland Britain during the mid and late Holocene. Quaternary Science Reviews, 30, 394-408.
    • Grant, S. A., Torvell, L., Common, T. G., Sim, E. M. & Small, J. L. 1996. Controlled Grazing Studies on Molinia Grassland: Effects of Different Seasonal Patterns and Levels of Defoliation on Molinia growth and Responses of Swards to Controlled Grazing bycattle. British Ecological Society, 33, 1267- 1280.
    • Green, B. 1968. Factors influencing the spatial and temporal distribution of Sphagnum imbricatum Hornsch. ex Russ. in the British Isles. The Journal of Ecology, 47-58.
    • Grimm, E. 1991. TILIA 1.7.16, TILIA*Graph 1.7.16. Springfield, IL.: Illinois State Museum, Research and Collection Centre.
    • Hogg, E. H., Lieffers, V. J. & Wein, R. W. 1992. Potential Carbon Losses From Peat Profiles: Effects of Temperature, Drought Cycles, and Fire. Ecological Applications, 2, 298-306.
    • Holden, J., Shotbolt, L., Bonn, A., Burt, T., Chapman, P., Dougill, A., Fraser, E., Hubacek, K., Irvine, B. & Kirkby, M. 2007. Environmental change in moorland landscapes. Earth-Science Reviews, 82, 75-100.
    • Hughes, P., Mallon, G., Essex, H., Amesbury, M., Charman, D., Blundell, A., Chambers, F., Daley, T. & Mauquoy, D. 2012. The use of k values to examine plant 'species signals' in a peat humification record from Newfoundland. Quaternary International, 268, 156-165.
    • Hughes, P. D. M., Barber, K. E., Langdon, P. G. & Mauquoy, D. 2000. Miredevelopment pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England. Holocene, 10, 465-479.
    • Innes, J. B., Blackford, J. J. & Rowley-Conwy, P. A. 2013. Late Mesolithic and early Neolithic forest disturbance: a high resolution palaeoecological test of human impact hypotheses. Quaternary Science Reviews, 77, 80-100.
    • Innes, J. B. & Simmons, I. G. 2000. Mid-Holocene charcoal stratigraphy, fire history and palaeoecology at North Gill, North York Moors, UK. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 151-165.
    • Jakab, G. & Sümegi, P. 2010. Preliminary data on the bog surface wetness from the Sirok Nyírjes-tó peat bog, Mátra Mts, Hungary. Central European Geology, 53, 43-65.
    • Jauhiainen, S., Laiho, R. & Vasander, H. 2002. Ecohydrological and vegetation changes in a restored bog and fen. Ann. Bot. Fennici, 39, 185-199.
    • Kivimäki, S. K., Sheppard, L. J., Leith, I. D. & Grace, J. 2013. Long-term enhanced nitrogen deposition increases ecosystem respiration and carbon loss from a Klinger, L. F., Taylor, J. A. & Franzen, L. G. 1996. The potential role of peatland dynamics in ice-age initiation. Quaternary Research, 45, 89-92.
    • Komulainen, V. M., Tuittila, E. S., Vasander, H. & Laine, J. 1999. Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO2 balance. Journal of Applied Ecology, 36, 634-648.
    • Kupryjanowics, M. 2004. The vegetation changes recorded in sediments of Kładkowe Bagno peat bog in Puszcza Knyszyńska Forest, north-eastern Poland. Acta Palaeobotanica, 44, 175-193.
    • Lamentowicz, M., Van Der Knaap, W., Lamentowicz, Ł., Van Leeuwen, J. F., Mitchell, E. A., Goslar, T. & Kamenik, C. 2010. A near‐ annual palaeohydrological study based on testate amoebae from a sub‐ alpine mire: surface wetness and the role of climate during the instrumental period. Journal of Quaternary Science, 25, 190-202.
    • Langdon, P. G., Barber, K. E. & Hughes, P. D. M. 2003. A 7500-year peat-based palaeoclimatic reconstruction and evidence for an 1100-year cyclicity in bog surface wetness from Temple Hill Moss, Pentland Hills, southeast Scotland. Quaternary Science Reviews, 22, 259-274.
    • Lee, H., Alday, J. G., Rose, R. J., O'reilly, J., Marrs, R. H. & Wilsey, B. 2013. Longterm effects of rotational prescribed burning and low-intensity sheep grazing on blanket-bog plant communities. Journal of Applied Ecology, 50, 625-635.
    • Lindsay, R., Charman, D., Everingham, F., O'reilly, R., Palmer, M., Rowell, T. & Stroud, D. 1988. The flow country: the peatlands of Caithness and Sutherland. Nature Conservancy Council.
    • Loisel, J. & Yu, Z. 2013. Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska. Journal of Geophysical Research: Biogeosciences, 118, 41-53.
    • Mauquoy, D., Hughes, P. D. M. & Van Geel, B. 2010. A protocol for plant macrofossil analysis of peat deposits. Mires and Peat, 7, 1-5.
    • Mauquoy, D., Yeloff, D., Van Geel, B., Charman, D. J. & Blundell, A. 2008. Two decadally resolved records from north‐ west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene. Journal of Quaternary Science, 23, 745-763.
    • Mauquoy, D. a. V. G., B. 2007. Mire and Peat Macros. Plant Macrofossil Methods and Studies, 2315-2336.
    • Mcclymont, E. L., Mauquoy, D., Yeloff, D., Broekens, P., Van Geel, B., Charman, D. J., Pancost, R. D., Chambers, F. M. & Evershed, R. P. 2008. The disappearance of Sphagnum imbricatum from Butterburn Flow, UK. The Holocene, 18, 991-1002.
    • Mcclymont, E. L., Mauquoy, D., Yeloff, D., Broekens, P., Van Geel, B., Charman, D. J., Pancost, R. D., Chambers, F. M. & Evershed, R. P. 2009. The disappearance of Sphagnum imbricatum from Butterburn Flow, UK: a reply to comments by Bjorn Robroek et al. The Holocene, 19, 1094-1097.
    • Montanarella, L., Jones, R. J. & Hiederer, R. 2006. The distribution of peatland in Europe. Mires & Peat, 1, 1-10.
    • Moore, P. D., Webb, J. A. & Collinson, M. E. 1991. Pollen Analysis, Oxford, Blackwell.
    • Muller, S. D., Miramont, C., Bruneton, H., Carré, M., Sottocornola, M., CourtPicon, M., De Beaulieu, J.-L., Nakagawa, T. & Schevin, P. 2012. A palaeoecological perspective for the conservation and restoration of Nedwell, D. B. & Watson, A. 1995. CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog: Influence of SO42− from acid rain. Soil Biology and Biochemistry, 27, 893-903.
    • Nichols, J. E., Booth, R. K., Jackson, S. T., Pendall, E. G. & Huang, Y. 2006. Paleohydrologic reconstruction based on< i> n-alkane distributions in ombrotrophic peat. Organic Geochemistry, 37, 1505-1513.
    • Norton, D. A. & De Lange, P. J. 2003. Fire and Vegetation in a Temperate Peat Bog: Implications for the Management of Threatened Species Page, S. E., Siegert, F., Rieley, J. O., Boehm, H.-D. V., Jaya, A. & Limin, S. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61-65.
    • Parker, A. G., Goudie, A. S., Anderson, D. E., Robinson, M. A. & Bonsall, C. 2002. A review of the mid-Holocene elm decline in the British Isles. Progress in Physical Geography, 26, 1-45.
    • Parry, L. E., Charman, D. J. & Blake, W. H. 2013. Comparative dating of recent peat deposits using natural and anthropogenic fallout radionuclides and Spheroidal Carbonaceous Particles (SCPs) at a local and landscape scale. Quaternary Geochronology, 15, 11-19.
    • Payne, R. 2014. The exposure of British peatlands to nitrogen deposition, 1900- 2030.
    • Payne, R. & Blackford, J. 2008. Peat humification and climate change: a multi-site comparison from mires in south-east Alaska. Mires and Peat, 3.
    • Peglar, S. M. & Birks, H. J. B. 1993. The mid-Holocene Ulmus fall at Diss Mere, South-East England - disease and human impact? : Springer.
    • Petrovský, E., Kapićka, A., Jordanova, N., Knab, M. & Hoffmann, V. 2000. Lowfield magnetic susceptibility: a proxy method of estimating increased pollution of different environmental systems. Environmental Geology, 39, 312-318.
    • Ramchunder, S. J., Brown, L. E. & Holden, J. 2009. Environmental effects of drainage, drain-blocking and prescribed vegetation burning in UK upland peatlands. Progress in Physical Geography, 33, 49-79.
    • Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L. & Friedrich, M. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon, 55, 1869-1887.
    • Richards, A. 1973. An upland race of Potentilla erecta (L.) Räusch. in the British Isles. Watsonia, 9, 301-317.
    • Roland, T. P., Caseldine, C. J., Charman, D. J., Turney, C. S. M. & Amesbury, M. J. 2014. Was there a '4.2 ka event' in Great Britain and Ireland? Evidence from the peatland record. Quaternary Science Reviews, 83, 11-27.
    • Sundberg, S. & Rydin, H. 2002. Habitat Requirements for Establishment of Sphagnum from Spores. Journal of Ecology, 90, 268-278.
    • Swindles, G. T., De Vleeschouwer, F. & Plunkett, G. 2010. Dating peat profiles using tephra: stratigraphy, geochemistry and chronology. Mires and Peat, 7.
    • Swindles, G. T., Lawson, I. T., Matthews, I. P., Blaauw, M., Daley, T. J., Charman, D. J., Roland, T. P., Plunkett, G., Schettler, G., Gearey, B. R., Turner, T. E., Rea, H. A., Roe, H. M., Amesbury, M. J., Chambers, F. M., Holmes, J., Mitchell, F. J. G., Blackford, J., Blundell, A., Branch, N., Holmes, J., Langdon, P., Mccarroll, J., Mcdermott, F., Oksanen, P. O., Pritchard, O., Stastney, P., Stefanini, B., Young, D., Wheeler, J., Becker, K. & Armit, I. 2013. Centennial-scale climate change in Ireland during the Holocene. Earth-Science Reviews, 126, 300-320.
    • Swindles, G. T., Morris, P. J., Baird, A. J., Blaauw, M. & Plunkett, G. 2012. Ecohydrological feedbacks confound peat‐ based climate reconstructions. Geophysical Research Letters, 39.
    • Swindles, G. T., Plunkett, G. & Roe, H. M. 2007. A delayed climatic response to solar forcing at 2800 cal. BP: multiproxy evidence from three Irish peatlands. The Holocene, 17, 177-182.
    • Turner, T. E., Swindles, G. T. & Roucoux, K. H. 2014. Late Holocene ecohydrological and carbon dynamics of a UK raised bog: impact of human activity and climate change. Quaternary Science Reviews, 84, 65-85.
    • Webster, K. L., Mclaughlin, J. W., Kim, Y., Packalen, M. S. & Li, C. S. 2013. Modelling carbon dynamics and response to environmental change along a boreal fen nutrient gradient. Ecological Modelling, 248, 148-164.
    • Worrall, F. & Clay, G. D. 2012. The impact of sheep grazing on the carbon balance of a peatland. Science of The Total Environment, 438, 426-434.
    • Xie, S., Nott, C. J., Avsejs, L. A., Maddy, D., Chambers, F. M. & Evershed, R. P. 2004. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochimica et Cosmochimica Acta, 68, 2849- 2862.
    • Yang, H., Rose, N. L. & Battarbee, R. W. 2001. Dating of recent catchment peats using spheroidal carbonaceous particle (SCP) concentration profiles with particular reference to Lochnagar, Scotland. Holocene, 11, 593-597.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article