LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Comber, Alexis; Brunsdon, Chris; Charlton, Martin; Harris, Paul (2016)
Publisher: Taylor & Francis
Languages: English
Types: Article
Subjects:
This letter describes and applies generic methods for generating local measures from the correspondence table. These were developed by integrating the functionality of two existing R packages: gwxtab and diffeR. They demonstrate how spatially explicit accuracy and error measures can be generated from local geographically weighted correspondence matrices, for example to compare classified and reference data (predicted and observed) for error analyses, and classes at times t1 and t2 for change analyses. The approaches in this letter extend earlier work that considered the measures derived from correspondence matrices in the context of generalized linear models and probability. Here the methods compute local, geographically weighted correspondence matrices, from which local statistics are directly calculated. In this case a selection of the overall and categorical difference measures proposed by Pontius and Milones (2011) and Pontius and Santacruz (2014), as well as spatially distributed estimates of kappa coefficients, User and Producer accuracies. The discussion reflects on the use of the correspondence matrix in remote sensing research, the philosophical underpinnings of local rather than global approaches for modelling landscape processes and the potential for policy and scientific benefits that local approaches support.

Share - Bookmark

Cite this article