Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lockyer, Stacey; Rowland, Ian; Spencer, Jeremy Paul Edward; Yaqoob, Parveen; Stonehouse, Welma (2016)
Publisher: Springer Berlin Heidelberg
Journal: European Journal of Nutrition
Languages: English
Types: Article
Subjects: Medicine (miscellaneous), Polyphenols, Cardiovascular disease, Blood pressure, Olive leaf, Original Contribution, Oleuropein, Nutrition and Dietetics, Plasma lipids
Purpose Dietary polyphenols have been demonstrated to favourably modify a number of cardiovascular risk markers such as blood pressure (BP), endothelial function and plasma lipids. We conducted a randomised, double-blind, controlled, crossover trial to investigate the effects of a phenolic-rich olive leaf extract (OLE) on BP and a number of associated vascular and metabolic measures. Methods A total of 60 pre-hypertensive [systolic blood pressure (SBP): 121–140 mmHg; diastolic blood pressure (DBP): 81–90 mmHg] males [mean age 45 (±SD 12.7 years, BMI 26.7 (±3.21) kg/m2] consumed either OLE (136 mg oleuropein; 6 mg hydroxytyrosol) or a polyphenol-free control daily for 6 weeks before switching to the alternate arm after a 4-week washout. Results Daytime [−3.95 (±SD 11.48) mmHg, p = 0.027] and 24-h SBP [−3.33 (±SD 10.81) mmHg, p = 0.045] and daytime and 24-h DBP [−3.00 (±SD 8.54) mmHg, p = 0.025; −2.42 (±SD 7.61) mmHg, p = 0.039] were all significantly lower following OLE intake, relative to the control. Reductions in plasma total cholesterol [−0.32 (±SD 0.70) mmol/L, p = 0.002], LDL cholesterol [−0.19 (±SD 0.56) mmol/L, p = 0.017] and triglycerides [−0.18 (±SD 0.48), p = 0.008] were also induced by OLE compared to control, whilst a reduction in interleukin-8 [−0.63 (±SD 1.13) pg/ml; p = 0.026] was also detected. Other markers of inflammation, vascular function and glucose metabolism were not affected. Conclusion Our data support previous research, suggesting that OLE intake engenders hypotensive and lipid-lowering effects in vivo. Electronic supplementary material The online version of this article (doi:10.1007/s00394-016-1188-y) contains supplementary material, which is available to authorized users.

Share - Bookmark

Cite this article