Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Scattergood, P.A.; Delor, M.; Sazanovich, I.V.; Towrie, M.; Weinstein, J.A. (2015)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Thanks to major advances in laser technologies, recent investigations of the ultrafast coupling of nuclear and electronic degrees of freedom (vibronic coupling) have revealed that such coupling plays a crucial role in a wide range of photoinduced reactions in condensed phase supramolecular systems. This paper investigates several new donor–bridge–acceptor charge-transfer molecular assemblies built on a trans-Pt(II) acetylide core. We also investigate how targeted vibrational excitation with low-energy IR light post electronic excitation can perturb vibronic coupling and affect the efficiency of electron transfer (ET) in solution phase. We compare and contrast properties of a range of donor–bridge–acceptor Pt(II) trans-acetylide assemblies, where IR excitation of bridge vibrations during UV-initiated charge separation in some cases alters the yields of light-induced product states. We show that branching to multiple product states from a transition state with appropriate energetics is the most rigid condition for the type of vibronic control we demonstrate in our study.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 V. Balzani, Electron Transfer in Chemistry, Wiley-VCH, Weinheim, 2001.
    • 2 3 4 5 6 7 8 9 10 11 12 13 14 15 J. J. Concepcion, R. L. House, J. M. Papanikolas and T. J. Meyer, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 15560-15564.
    • V. Balzani, G. Bergamini, F. Marchioni and P. Ceroni, Coord. Chem. Rev., 2006, 250, 1254-1266.
    • S. Karlsson, J. Boixel, Y. Pellegrin, E. Blart, H.-C. Becker, F. Odobel and L. Hammarström, J. Am. Chem. Soc., 2010, 132, 17977-17979.
    • J. H. Alstrum-Acevedo, M. K. Brennaman and T. J. Meyer, Inorg. Chem., 2005, 44, 6802-6827.
    • N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V Shank and J. K. McCusker, Science, 1997, 275, 54-57.
    • A. El Nahhas, A. Cannizzo, F. van Mourik, A. M. Blanco-Rodríguez, S. Zális, A. Vlcek and M. Chergui, J. Phys. Chem. A, 2010, 114, 6361-6369.
    • S. E. Canton, K. S. Kjaer, G. Vankó, T. B. van Driel, S. Adachi, A. Bordage, C. Bressler, P. Chabera, M. Christensen, A. O. Dohn, A. Galler, W. Gawelda, D. Gosztola, K. Haldrup, T. Harlang, Y. Liu, K. B. Møller, Z. Németh, S. Nozawa, M. Pápai, T. Sato, T. Sato, K. Suarez-Alcantara, T. Togashi, K. Tono, J. Uhlig, D. A. Vithanage, K. Wärnmark, M. Yabashi, J. Zhang, V. Sundström and M. M. Nielsen, Nat. Commun., 2015, 6, 6359.
    • P. F. Barbara, T. J. Meyer and M. A. Ratner, J. Phys. Chem., 1996, 100, 13148-13168.
    • M. Galperin, M. a Ratner, A. Nitzan and A. Troisi, Science, 2008, 319, 1056-1060.
    • J. Sukegawa, C. Schubert, X. Zhu, H. Tsuji, D. M. Guldi and E. Nakamura, Nat. Chem., 2014, 6, 899-905.
    • C. Schnedermann, M. Liebel and P. Kukura, J. Am. Chem. Soc., 2015, 137, 2886- 2891.
    • J. N. Schrauben, K. L. Dillman, W. F. Beck and J. K. McCusker, Chem. Sci., 2010, 1, 405-410.
    • Y. Yue, T. Grusenmeyer, Z. Ma, P. Zhang, R. H. Schmehl, D. N. Beratan and I. V Rubtsov, Dalt. Trans., 2015, 44, 8609-8616.
    • Y. Yue, L. N. Qasim, A. A. Kurnosov, N. I. Rubtsova, R. T. Mackin, H. Zhang, B. Zhang, X. Zhou, J. Jayawickramarajah, A. L. Burin and I. V Rubtsov, J. Phys. Chem. B, 2015, 6448-6456.
    • A. Harriman, M. Hissler, O. Trompette, R. Ziessel and L. Pasteur, 1999, 2516-2525.
    • J. E. Yarnell, J. C. Deaton, C. E. McCusker and F. N. Castellano, Inorg. Chem., 2011, 50, 7820-7830.
    • D. J. Stufkens and A. Vlcek, 1998, 177, 127-179.
    • A. Cannizzo, A. M. Blanco-Rodríguez, A. El Nahhas, J. Sebera, S. Zális, A. Vlcek and M. Chergui, J. Am. Chem. Soc., 2008, 130, 8967-8974.
    • M. E. Walther, J. Grilj, D. Hanss, E. Vauthey and O. S. Wenger, Eur. J. Inorg. Chem., 2010, 2010, 4843-4850.
    • L. M. Kiefer, J. T. King and K. J. Kubarych, Acc. Chem. Res., 2015, 48, 1123-1130.
    • A. El Nahhas, C. Consani, A. M. Blanco-Rodríguez, K. M. Lancaster, O. Braem, A. Cannizzo, M. Towrie, I. P. Clark, S. Zális, M. Chergui and A. Vlcek, Inorg. Chem., 2011, 50, 2932-2943.
    • P. Paoprasert, J. E. Laaser, W. Xiong, R. A. Franking, R. J. Hamers, M. T. Zanni, J. R. Schmidt and P. Gopalan, J. Phys. Chem. C, 2010, 114, 9898-9907.
    • M. Hissler, W. B. Connick, D. K. Geiger, J. E. McGarrah, D. Lipa, R. J. Lachicotte and R. Eisenberg, Inorg. Chem., 2000, 39, 447-457.
    • J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355-4365.
    • S. Archer and J. A. Weinstein, Coord. Chem. Rev., 2012, 256, 2530-2561.
    • E. A. Glik, S. Kinayyigit, K. L. Ronayne, M. Towrie, I. V Sazanovich, J. A. Weinstein and F. N. Castellano, Inorg. Chem., 2008, 47, 6974-6983.
    • E. O. Danilov, I. E. Pomestchenko, S. Kinayyigit, P. L. Gentili, M. Hissler, R. Ziessel and F. N. Castellano, J. Phys. Chem. A, 2005, 109, 2465-2471.
    • E. O. Danilov, A. A Rachford, S. Goeb and F. N. Castellano, J. Phys. Chem. A, 2009, 113, 5763-5768.
    • H. Guo, M. L. Muro-Small, S. Ji, J. Zhao and F. N. Castellano, Inorg. Chem., 2010, 49, 6802-6804.
    • M. L. Muro, A. A. Rachford, X. Wang and F. N. Castellano, Top Organomet Chem, 2010, 29, 159-191.
    • E. C.-H. Kwok, M.-Y. Chan, K. M.-C. Wong and V. W.-W. Yam, Chem Eur J, 2014, 20, 3142-3153.
    • C.-H. Tao, N. Zhu and V. W.-W. Yam, Chem Eur J, 2005, 11, 1647-1657.
    • K. Kim, S. Liu, M. E. Kose and K. S. Schanze, Inorg. Chem., 2006, 45, 2509-2519.
    • C. E. Whittle, J. A. Weinstein, M. W. George and K. S. Schanze, Inorg. Chem., 2001, 40, 4053-4062.
    • J. M. Keller, K. D. Glusac, E. O. Danilov, S. McIlroy, P. Sreearuothai, A. R. Cook, H. Jiang, J. R. Miller and K. S. Schanze, J. Am. Chem. Soc., 2011, 133, 11289-11298.
    • R. Sugimura, S. Suzuki, M. Kozaki, K. Keyaki, K. Nozaki, H. Matsushita, N. Ikeda and K. Okada, Res. Chem. Intermed., 2013, 39, 185-204.
    • M. Delor, P. A. Scattergood, I. V Sazanovich, A. W. Parker, G. M. Greetham, A. J. H. M. Meijer, M. Towrie and J. A. Weinstein, Science, 2014, 346, 1492-1495.
    • P. A. Scattergood, M. Delor, I. V Sazanovich, O. V Bouganov, S. A. Tikhomirov, A. S. Stasheuski, A. W. Parker, G. M. Greetham, M. Towrie, E. S. Davies, A. J. H. M. Meijer and J. A. Weinstein, Dalt. Trans., 2014, 43, 17677-17693.
    • G. Zhou, W.-Y. Wong, S.-Y. Poon, C. Ye and Z. Lin, Adv. Funct. Mater., 2009, 19, 531-544.
    • L. Liu, D. Huang, S. M. Draper, X. Yi, W. Wu and J. Zhao, Dalt. Trans., 2013, 42, 10694-10706.
    • C. Liao, J. E. Yarnell, K. D. Glusac and K. S. Schanze, J. Phys. Chem. B, 2010, 114, 14763-14771.
    • R. Packheiser, P. Ecorchard, T. Ru and H. Lang, Organometallics, 2008, 27, 3534- 3546.
    • F. Nolde, J. Qu, C. Kohl, N. G. Pschirer, E. Reuther and K. Müllen, Chem. - A Eur. J., 2005, 11, 3959-3967.
    • P. D. Frischmann, K. Mahata and F. Würthner, Chem. Soc. Rev., 2013, 1847-1870.
    • D. Gosztola, M. P. Niemczyk, W. Svec, A. S. Lukas and M. R. Wasielewski, J. Phys. Chem. A, 2000, 104, 6545-6551.
    • H. Langhals, R. Ismael and O. Yürük, Tetrahedron, 2000, 56, 5435-5441.
    • F. N. Castellano, Dalton Trans., 2012, 41, 8493-8501.
    • I. V Sazanovich, M. A. H. Alamiry, A. J. H. M. Meijer, M. Towrie, E. S. Davies, R. D. Bennett and J. A. Weinstein, Pure Appl. Chem., 2013, 85, 1331-1348.
    • I. V Sazanovich, M. A. H. Alamiry, J. Best, R. D. Bennett, O. V Bouganov, E. S. Davies, V. P. Grivin, A. J. H. M. Meijer, V. F. Plyusnin, K. L. Ronayne, A. H. Shelton, S. A. Tikhomirov, M. Towrie and J. A. Weinstein, Inorg. Chem., 2008, 47, 10432-10445.
    • J. M. Keller and K. S. Schanze, Organometallics, 2009, 28, 4210-4216.
    • D. Hanss and O. S. Wenger, Eur. J. Inorg. Chem., 2009, 2009, 3778-3790.
    • T. C. Barros, S. Brochsztain, V. G. Toscano, P. B. Filho and M. J. Politi, J. Photochem. Photobiol. A Chem., 1997, 111, 97-104.
    • S. R. Greenfield, W. A. Svec, D. Gosztola and M. R. Wasielewski, J. Am. Chem. Soc., 1996, 118, 6767-6777.
    • J. E. Rogers and L. A. Kelly, J. Am. Chem. Soc., 1999, 121, 3854-3861.
    • N. M. Shavaleev, E. S. Davies, H. Adams, J. Best and J. A. Weinstein, Inorg. Chem., 2008, 47, 1532-1547.
    • N. M. Shavaleev, H. Adams, J. Best and J. A. Weinstein, J. Organomet. Chem., 2007, 692, 921-925.
    • M. Hissler, J. E. McGarrah, W. B. Connick, D. K. Geiger, S. D. Cummings and R. Eisenberg, Coord. Chem. Rev., 2000, 208, 115-137.
    • I. V Sazanovich, J. Best, P. a. Scattergood, M. Towrie, S. a. Tikhomirov, O. V Bouganov, A. J. H. M. Meijer and J. a. Weinstein, Phys. Chem. Chem. Phys., 2014, 16, 25775-25788.
    • M. Delor, T. Keane, P. A. Scattergood, I. V Sazanovich, G. M. Greetham, M. Towrie, A. J. H. M. Meijer and J. A. Weinstein, Nat. Chem., 2015, accepted.
    • M. Delor, I. V Sazanovich, M. Towrie and J. A. Weinstein, Acc. Chem. Res., 2015.
    • G. M. Greetham, P. Burgos, Q. Cao, I. P. Clark, P. S. Codd, R. C. Farrow, M. George, M. Kogimtzis, P. Matousek, A. W. Parker, M. R. Pollard, D. A. Robinson, Z.-J. Xin and M. Towrie, Appl. Spectrosc., 2010, 64, 1311-1319.
    • J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen and I. H. M. van Stokkum, J. Stat. Softw., 2012, 49, 1-22.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article