LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Catta-Preta, Carolina Moura Costa; Pascoalino, Bruno Dos Santos; de Souza, Wanderley; Mottram, Jeremy C; Motta, Maria Cristina M; Schenkman, Sergio
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: fungi
In the last two decades, RNA interference pathways have been employed as a useful tool for reverse genetics in trypanosomatids. Angomonas deanei is a non-pathogenic trypanosomatid that maintains an obligatory endosymbiosis with a bacterium related to the Alcaligenaceae family. Studies of this symbiosis can help us to understand the origin of eukaryotic organelles. The recent elucidation of both the A. deanei and the bacterium symbiont genomes revealed that the host protozoan codes for the enzymes necessary for RNAi activity in trypanosomatids. Here we tested the functionality of the RNAi machinery by transfecting cells with dsRNA to a reporter gene (green fluorescent protein), which had been previously expressed in the parasite and to α-tubulin, an endogenous gene. In both cases, protein expression was reduced by the presence of specific dsRNA, inducing, respectively, a decreased GFP fluorescence and the formation of enlarged cells with modified arrangement of subpellicular microtubules. Furthermore, symbiont division was impaired. These results indicate that the RNAi system is active in A. deanei and can be used to further explore gene function in symbiont-containing trypanosoma tids and to clarify important aspects of symbiosis and cell evolution. This article is protected by copyright. All rights reserved.

Share - Bookmark

Funded by projects

  • WT

Cite this article