LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Caporilli, Simona
Languages: English
Types: Doctoral thesis
Subjects: QR
Vertebrate heart development involves a precise sequence of morphogenetic events from \ud which a complex structure is formed from a linear heart tube. To study the heart development \ud in mammals is difficult because most alterations of heart structure are lethal. Therefore we use \ud alternative model, Xenopus laevis embryos. The aim of this project is try to establish a new \ud experimental model to help understanding the mechanism that regulates cardiac cell \ud diversification and heart morphogenesis. In order to achieve these goals we use two assays. \ud The cardiogenesis assay involves the use of animal cap explants excised from the animal pole \ud of blastula embryos. It has been previously established that it is possible to induce \ud differentiation of cardiac tissue in the same explants via the injection of GATA-4 mRNA. \ud Here it is shown that GATA-4 reliably induces the expression of ventricular and proepicardial \ud markers, providing an assay to study the mechanisms of cardiac cell fate diversification. \ud However, despite these, cardiomyocytes generated in animal pole explants they do not \ud undergo significant morphogenesis and physiological maturation. In order to study these later \ud aspects of heart development we required a different assay in which was possible to generate a \ud structure similar to the heart. Using GATA-4 injected AC explants transplanted into host \ud embryos we obtained secondary beating hearts in which regionally restricted cardiac gene \ud expression was observed in addition to growth and a limited degree of morphogenesis. We \ud demonstrated that the host plays an essential role as it provides a wide range of permissive \ud regions which allow the development of the SH. Moreover, we also showed that the \ud competence to generate a secondary heart is lost in reaggregates transplanted at stage 28. The \ud host cells however do not contribute to the SH indicating that the role of the host is providing \ud signals which allow the development of the SH. In the future we aim to investigate the \ud signalling pathways which mediate the host-SH interaction and the mechanism by which they \ud allow the development of the secondary structure.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 6.3 S i g n a l l i n g i n X e n o p u s h e a r t d e v e l o p m e n t a f t e r c a r d i a c s p e c i f i c a t i o n 160 163 Abu-Issa, R., Smyth, G., Smoak, I., Yamamura, K., and Meyers, E. N. (2002). Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129, 4613-25.
    • Afouda, B. A., Ciau-Uitz, A., and Patient, R. (2005). GATA4, 5 and 6 mediate TGFbeta maintenance o f endoderm al gene expression in Xenopus embryos. Development 132, 763-74.
    • Agius, E., Oelgeschlager, M., W essely, O., Kemp, C., and De Robertis, E. M. (2000). Endodermal N odal-related signals and mesoderm induction in Xenopus. Development 127, 1173-83.
    • Ai, D., Fu, X., W ang, J., Lu, M. F., Chen, L., Baldini, A., Klein, W. H., and Martin, J. F. (2007). Canonical W nt signaling functions in second heart field to promote right ventricular growth. Proc N atl A ca d Sci U S A 104, 9319-24.
    • Ai, D., Liu, W ., Ma, L., Dong, F., Lu, M. F., W ang, D., Verzi, M. P., Cai, C., Gage, P. J., Evans, S., Black, B. L., Brown, N. A., and M artin, J. F. (2006). Pitx2 regulates cardiac left-right asym m etry by patterning second cardiac lineage-derived myocardium. D ev Biol 296,437-49.
    • Akazawa, H., and Komuro, I. (2005). Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac developm ent and diseases. Pharm acol Ther 107, 252-68.
    • Alsan, B. H., and Schultheiss, T. M. (2002). Regulation of avian cardiogenesis by Fgf8 signaling. D evelopm ent 129, 1935-43.
    • Arceci, R. J., King, A. A., Simon, M. C., Orkin, S. H., and W ilson, D. B. (1993). Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. M ol Cell Biol 13, 2235-46.
    • Ariizumi, T., and Asashim a, M. (2001). In vitro induction systems for analyses of amphibian organogenesis and body patterning. Int J Dev Biol 45, 273-9.
    • Ariizumi, T., Kinoshita, M., Yokota, C., Takano, K., Fukuda, K., Moriyama, N., M alacinski, G. M., and A sashim a, M. (2003). Amphibian in vitro heart induction: a simple and reliable m odel for the study of vertebrate cardiac development. Int J Dev Biol 47, 405-10.
    • Ariizumi, T., Sawamura, K., U chiyam a, H., and Asashima, M. (1991). Dose and timedependent m esoderm induction and outgrowth formation by activin A in Xenopus laevis. Int J D ev Biol 35, 407-14.
    • Asashima, M., Ito, Y., Chan, T., M ichiue, T., Nakanishi, M., Suzuki, K., Hitachi, K , Okabayashi, K., Kondow, A., and Ariizumi, T. (2009). In vitro organogenesis from undifferentiated cells in Xenopus. D ev Dyn 238, 1309-20.
    • Asashima, M., Nakano, H., Shim ada, K., Kinoshita, K., Ishii, K., Shibai, H., and Ueno, N. (1990). M esoderm al induction in early amphibian embryos by activin A (erythroid differentiation factor). D evelopm ent Genes and Evolution 198, 330-335.
    • Attisano, L., and W rana, J. L. (2002). Signal transduction by the TGF-beta superfamily. Science 296, 1646-7.
    • Baker, K., Holtzman, N. G., and Burdine, R. D. (2008). Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart. Proc N atl A ca d Sci U S A 105, 13924-9.
    • Baldini, A. (2004). D iG eorge syndrome: an update. Curr Opin Cardiol 19, 201-4.
    • Basson, C. T., Bachinsky, D. R., Lin, R. C., Levi, T., Elkins, J. A., Soults, J., Grayzel, D., Kroumpouzou, E., Traill, T. A., Leblanc-Straceski, J., Renault, B., Kucherlapati, R., Seidman, J. G., and Seidman, C. E. (1997). Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. N at Genet 15, 30-5.
    • Beck, C. W ., and Slack, J. M. (2001). An amphibian with ambition: a new role for Xenopus in the 21st century. Genome Biol 2, REVIEWS 1029.
    • Black, B. L. (2007). Transcriptional pathways in second heart field development. Semin Cell Dev Biol 18, 67-76.
    • Blitz, I. L., Andelfinger, G., and Horb, M. E. (2006). Germ layers to organs: using Xenopus to study "later" developm ent. Semin Cell Dev Biol 17, 133-45.
    • Boettger, T., W ittier, L., and Kessel, M. (1999). FGF8 functions in the specification of the right body side o f the chick. Curr Biol 9, 277-80.
    • Boogerd, C. J., M oorman, A. F., and Barnett, P. (2009). Protein interactions at the heart of cardiac cham ber formation. A nn A na t 191, 505-17.
    • Bottcher, R. T., and Niehrs, C. (2005). Fibroblast growth factor signaling during early vertebrate developm ent. E ndocr Rev 26, 63-77.
    • Bowes, J. B., Snyder, K. A., Segerdell, E., Jarabek, C. J., Azam, K., Zorn, A. M., and Vize, P. D. (2010). Xenbase: gene expression and improved integration. Nucleic Acids Res 38, D607-12.
    • Brade, T., Gessert, S., Kuhl, M ., and Pandur, P. (2007). The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development. Dev Biol 311, 297-310.
    • Brand, T. (2003). H eart developm ent: m olecular insights into cardiac specification and early morphogenesis. D ev Biol 258, 1-19.
    • Breckenridge, R. A., M ohun, T. J., and Amaya, E. (2001). A role for BMP signalling in heart looping m orphogenesis in Xenopus. D ev Biol 232, 191-203.
    • Bruneau, B. G. (2008). The developm ental genetics of congenital heart disease. Nature 451, 943-8.
    • Buckingham, M., M eilhac, S., and Zaffran, S. (2005). Building the mammalian heart from two sources o f m yocardial cells. N at Rev G enet 6, 826-35.
    • Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., and Evans, S. (2003). Isll identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a m ajority o f cells to the heart. D ev Cell 5, 877-89.
    • Cai, C. L., M artin, J. C., Sun, Y., Cui, L., W ang, L., Ouyang, K., Yang, L., Bu, L., Liang, X., Zhang, X., Stallcup, W . B., Denton, C. P., McCulloch, A., Chen, J., and Evans, S. M. (2008). A m yocardial lineage derives from T b x l8 epicardial cells. Nature 454, 104-8.
    • Campione, M., Steinbeisser, H., Schweickert, A., Deissler, K., van Bebber, F., Lowe, L. A., Nowotschin, S., V iebahn, C., Haffter, P., Kuehn, M. R., and Blum, M. (1999). The homeobox gene Pitx2: m ediator o f asymmetric left-right signaling in vertebrate heart and gut looping. D evelopm ent 126, 1225-34.
    • Cha, S. W ., Tadjuidje, E., Tao, Q., W ylie, C., and Heasman, J. (2008). W nt5a and W n tll interact in a m aternal D kkl-regulated fashion to activate both canonical and noncanonical signaling in X enopus axis formation. Development 135, 3719-29.
    • Chambers, A. E., Logan, M ., Kotecha, S., Towers, N., Sparrow, D., and Mohun, T. J. (1994). The RSRF/M EF2 protein SL1 regulates cardiac muscle-specific transcription o f a m yosin light-chain gene in Xenopus embryos. Genes Dev 8, 1324-34.
    • Chamg, M. J., Frenkel, P. A., Lin, Q., Yamada, M., Schwartz, R. J., Olson, E. N., Overbeek, P., and Schneider, M. D. (1998). A constitutive mutation of ALK5 disrupts cardiac looping and morphogenesis in mice. Dev Biol 199,72-9.
    • Chazaud, C., Chambon, P., and Dolle, P. (1999). Retinoic acid is required in the mouse embryo for left-right asym m etry determination and heart morphogenesis. Development 126, 2589-96.
    • Chen, J. N., van Eeden, F. J., W arren, K. S., Chin, A., Nusslein-Volhard, C., Haffter, P., and Fishman, M. C. (1997). Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. D evelopm ent 124,4373-82.
    • Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. A nal Biochem 162, 156-9.
    • Christian, J. L., and M oon, R. T. (1993). Interactions between Xwnt-8 and Spemann organizer signaling pathw ays generate dorsoventral pattern in the embryonic mesoderm of Xenopus. G enes D ev 7, 13-28.
    • Christian, J. L., Olson, D. J., and M oon, R. T. (1992). Xwnt-8 modifies the character of mesoderm induced by bFG F in isolated Xenopus ectoderm. Embo J 11, 33-41.
    • Christoffels, V. M ., Burch, J. B., and M oorman, A. F. (2004). Architectural plan for the heart: early patterning and delineation o f the chambers and the nodes. Trends Cardiovasc M ed 14, 301-7.
    • Cohen, E. D., W ang, Z., Lepore, J. J., Lu, M. M ., Taketo, M. M., Epstein, D. J., and Morrisey, E. E. (2007). W nt/beta-catenin signaling promotes expansion of Isl-1- positive cardiac progenitor cells through regulation o f FGF signaling. J Clin Invest 117, 1794-804.
    • Collop, A. H., Broomfield, J. A., Chandraratna, R. A., Yong, Z., Deimling, S. J., Kolker, S. J., W eeks, D. L., and D rysdale, T. A. (2006). Retinoic acid signaling is essential for formation o f the heart tube in Xenopus. D ev Biol 291, 96-109.
    • Dale, L., and Slack, J. M. (1987). Regional specification within the mesoderm of early embryos o f Xenopus laevis. D evelopm ent 100, 279-95.
    • de Campos-Baptista, M. I., H oltzm an, N. G., Yelon, D., and Schier, A. F. (2008). Nodal signaling promotes the speed and directional movement of cardiomyocytes in zebrafish. Dev Dyn 237, 3624-33.
    • de la Cruz, M. V., Sanchez Gom ez, C., Arteaga, M. M., and Arguello, C. (1977). Experimental study o f the developm ent o f the truncus and the conus in the chick embryo. J A nat 123, 661-86.
    • de Pater, E., Clijsters, L., M arques, S. R., Lin, Y. F., Garavito-Aguilar, Z. V., Yelon, D., and Bakkers, J. (2009). D istinct phases o f cardiomyocyte differentiation regulate growth o f the zebrafish heart. D evelopm ent 136, 1633-41.
    • De Robertis, E. M ., and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. A nnu Rev Cell D ev Biol 20, 285-308.
    • De Robertis, E. M., Larrain, J., O elgeschlager, M., and Wessely, O. (2000). The establishment o f Spem ann's organizer and patterning o f the vertebrate embryo. Nat Rev Genet 1, 171-81.
    • Dodou, E., Verzi, M. P., A nderson, J. P., Xu, S. M., and Black, B. L. (2004). Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse em bryonic developm ent. Developm ent 131, 3931-42.
    • Drysdale, T. A., Patterson, K. D., Saha, M., and Krieg, P. A. (1997). Retinoic acid can block differentiation o f the myocardium after heart specification. Dev Biol 188, 205-15.
    • Drysdale, T. A., Tonissen, K. F., Patterson, K. D., Crawford, M. J., and Krieg, P. A. (1994). Cardiac troponin I is a heart-specific marker in the Xenopus embryo: expression during abnorm al heart morphogenesis. Dev Biol 165,432-41.
    • Durocher, D., Charron, F., W arren, R., Schwartz, R. J., and Nemer, M. (1997). The cardiac transcription factors N kx2-5 and GATA-4 are mutual cofactors. Embo J 16, 5687- 96.
    • Dyer, L. A., and Kirby, M. L. (2009). The role of secondary heart field in cardiac development. Dev B iol 336, 137-44.
    • Eisenberg, L. M., and Eisenberg, C. A. (2007). Evaluating the role of W nt signal transduction in prom oting the developm ent o f the heart. ScientificWorldJournal 7, 161-76.
    • Fishman, M. C., and Olson, E. N. (1997). Parsing the heart: genetic modules for organ assembly. Cell 91, 153-6.
    • Foley, A. C., Gupta, R. W ., G uzzo, R. M., Korol, O., and M ercola, M. (2006). Embryonic heart induction. Ann N Y A cad Sci 1080, 85-96.
    • Gamock, R. J., and Drysdale, T. A. (2003). Regulation o f heart size in Xenopus laevis. Differentiation 71, 506-15.
    • Garriock, R. J., Vokes, S. A., Small, E. M ., Larson, R., and Krieg, P. A. (2001). Developmental expression o f the Xenopus Iroquois-family homeobox genes, Irx4 and Irx5. D ev Genes E vol 211, 257-60.
    • Gessert, S., and Kuhl, M. (2010). The multiple phases and faces of w nt signaling during cardiac differentiation and developm ent. Circ Res 107, 186-99.
    • Gilbert, S. F. (2006). "Developmental Biology." Sinauer Associates Incorporated, Sunderland, M assachusetts
    • Glinka, A., W u, W ., Delius, H., M onaghan, A. P., Blumenstock, C., and Niehrs, C. (1998). Dickkopf-1 is a m em ber o f a new fam ily of secreted proteins and functions in head induction. N ature 391, 357-62.
    • Glinka, A., W u, W ., O nichtchouk, D., Blum enstock, C., and Niehrs, C. (1997). Head induction by sim ultaneous repression o f Bmp and W nt signalling in Xenopus. Nature 389, 517-9.
    • Graff, J. M. (1997). Em bryonic patterning: to B M P or not to BMP, that is the question. Cell 89, 171-4.
    • Graff, J. M., Thies, R. S., Song, J. J., Celeste, A. J., and M elton, D. A. (1994). Studies with a Xenopus BM P receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169-79.
    • Green, J. B., Howes, G., Symes, K., Cooke, J., and Smith, J. C. (1990). The biological effects o f XTC-M IF: quantitative com parison with Xenopus bFGF. Development 108, 173-83.
    • Green, J. B., New, H. V., and Smith, J. C. (1992). Responses of embryonic Xenopus cells to activin and FG F are separated by multiple dose thresholds and correspond to distinct axes of the m esoderm . Cell 71, 731-9.
    • Grunz, H., and Tacke, L. (1989). Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ Dev 28,211-7.
    • Harris, I. S., and Black, B. L. (2010). Developm ent of the endocardium. Pediatr Cardiol 31, 391-9.
    • Harvey, R. P. (2002). Patterning the vertebrate heart. N at Rev Genet 3, 544-56.
    • Heasman, J. (2002). M orpholino oligos: making sense of antisense? Dev Biol 243, 209-14.
    • Heasman, J. (2006). Patterning the early Xenopus embryo. Development 133, 1205-17.
    • Heine, U. I., Roberts, A. B., M unoz, E. F., Roche, N. S., and Spom, M. B. (1985). Effects of retinoid deficiency on the developm ent of the heart and vascular system of the quail embryo. Virchows Arch B Cell Pathol Incl M ol Pathol 50, 135-52.
    • Hill, C. S. (2001). TG F-beta signalling pathways in early Xenopus development. Curr Opin Genet D ev 11, 533-40.
    • Hochgreb, T., Linhares, V. L., M enezes, D. C., Sampaio, A. C., Yan, C. Y., Cardoso, W. V., Rosenthal, N., and Xavier-N eto, J. (2003). A caudorostral wave of RALDH2 conveys anteroposterior inform ation to the cardiac field. Development 130, 5363- 74.
    • Hoogaars, W. M., Barnett, P., M oorm an, A. F., and Christoffels, V. M. (2007). T-box factors determine cardiac design. Cell M ol Life Sci 64, 646-60.
    • Hoogaars, W. M., Tessari, A., M oorm an, A. F., de Boer, P. A., Hagoort, J., Soufan, A. T., Campione, M ., and Christoffels, V. M. (2004). The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62,489-99.
    • Howell, M., M ohun, T. J., and Hill, C. S. (2001). Xenopus Smad3 is specifically expressed in the chordoneural hinge, notochord and in the endocardium of the developing heart. M ech D ev 104, 147-50.
    • Hagan, R., Abu-Issa, R., Brown, D., Yang, Y. P., Jiao, K., Schwartz, R. J., Klingensmith, J., and Meyers, E. N. (2006). Fgf8 is required for anterior heart field development. Development 133, 2435-45.
    • Inman, G. J., Nicolas, F. J., Callahan, J. F., Harling, J. D., Gaster, L. M., Reith, A. D., Laping, N. J., and Hill, C. S. (2002). SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfam ily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. M ol Pharmacol 62, 65-74.
    • Jahr, M., Schlueter, J., Brand, T., and M anner, J. (2008). Development of the proepicardium in X enopus laevis. D ev D yn 237, 3088-96.
    • Jamali, M., Karamboulas, C., Rogerson, P. J., and Skerjanc, I. S. (2001a). BMP signaling regulates Nkx2-5 activity during cardiom yogenesis. FEBS Lett 509, 126-30.
    • Jamali, M., Rogerson, P. J., W ilton, S., and Skerjanc, I. S. (2001b). Nkx2-5 activity is essential for cardiom yogenesis. J Biol Chem 276, 42252-8.
    • Jiang, Y., and Evans, T. (1996). The X enopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. D ev B iol 174, 258-70.
    • Keegan, B. R., Feldman, J. L., Begem ann, G., Ingham, P. W ., and Yelon, D. (2005). Retinoic acid signaling restricts the cardiac progenitor pool.Science 307, 247-9.
    • Keegan, B. R., M eyer, D., and Yelon, D. (2004). Organization of cardiac chamber progenitors in the zebrafish blastula. D evelopm ent 131, 3081-91.
    • Kelley, C., Blumberg, H., Zon, L. I., and Evans, T. (1993). GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 118,817-27.
    • Kelly, R. G., Brown, N. A., and B uckingham , M. E. (2001). The arterial pole of the mouse heart forms from F gf 10-expressing cells in pharyngeal mesoderm. Dev Cell 1,435- 40.
    • Kessler, D. S., and M elton, D. A. (1994). Vertebrate embryonic induction: mesodermal and neural patterning. Science 266, 596-604.
    • Kinoshita, M., Ariizumi, T., Y uasa, S., M iyoshi, S., Komazaki, S., Fukuda, K., and Asashima, M. (2010). Creating frog heart as an organ: in vitro-induced heart functions as a circulatory organ in vivo. Int J Dev Biol 54, 851-6.
    • Klein, P. S., and M elton, D. A. (1996). A m olecular mechanism for the effect of lithium on development. Proc N atl A c a d Sci U S A 93, 8455-9.
    • Kofron, M., Demel, T., Xanthos, J., Lohr, J., Sun, B., Sive, H., Osada, S., Wright, C., W ylie, C., and H easm an, J. (1999). M esoderm induction in Xenopus is a zygotic event regulated by m aternal VegT via TGFbeta growth factors. Development 126, 5759-70.
    • Kolker, S. J., Tajchman, U., and W eeks, D. L. (2000). Confocal imaging of early heart development in Xenopus laevis. Dev Biol 218, 64-73.
    • Kuo, C. T., Morrisey, E. E., Anandappa, R., Sigrist, K., Lu, M. M., Parmacek, M. S., Soudais, C., and Leiden, J. M. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11, 1048-60.
    • Kuroda, H., Fuentealba, L., Ikeda, A., Reversade, B., and De Robertis, E. M. (2005). Default neural induction: neuralization o f dissociated Xenopus cells is mediated by Ras/M APK activation. Genes D ev 19, 1022-7.
    • Latinkic, B. V., Cooper, B., Smith, S., Kotecha, S., Towers, N., Sparrow, D., and Mohun, T. J. (2004). Transcriptional regulation o f the cardiac-specific MLC2 gene during Xenopus embryonic developm ent. D evelopm ent 131, 669-79.
    • Latinkic, B. V., Cooper, B., Tow ers, N., Sparrow, D., Kotecha, S., and Mohun, T. J. (2002). Distinct enhancers regulate skeletal and cardiac muscle-specific expression programs o f the cardiac alpha-actin gene in Xenopus embryos. Dev Biol 245, 57- 70.
    • Latinkic, B. V., Kotecha, S., and M ohun, T. J. (2003). Induction o f cardiomyocytes by GATA4 in Xenopus ectoderm al explants. D evelopm ent 130, 3865-76.
    • Laugwitz, K. L., M oretti, A., Caron, L., Nakano, A., and Chien, K. R. (2008). Islet 1 cardiovascular progenitors: a single source for heart lineages? Development 135, 193-205.
    • Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S., and De Robertis, E. M. (1997). Frzb-1 is a secreted antagonist o f W nt signaling expressed in the Spemann organizer. Cell 88,747-56.
    • Lin, Q., Schwarz, J., Bucana, C., and Olson, E. N. (1997). Control of mouse cardiac morphogenesis and m yogenesis by transcription factor MEF2C. Science 276, 1404- 7.
    • Liu, J., and Stainier, D. Y. (2010). Tbx5 and Bm p signaling are essential for proepicardium specification in zebrafish. Circ R es 106, 1818-28.
    • Livak, K. J., and Schmittgen, T. D. (2001). A nalysis of relative gene expression data using real-time quantitative PC R and the 2(-Delta D elta C(T)) Method. Methods 25, 402- 8.
    • Logan, M., and M ohun, T. (1993). Induction o f cardiac muscle differentiation in isolated animal pole explants o f X enopus laevis embryos. Development 118, 865-75.
    • Lohr, J. L., and Yost, H. J. (2000). Vertebrate model systems in the study of early heart development: Xenopus and zebrafish. A m J M ed Genet 97, 248-57.
    • Lough, J., and Sugi, Y. (2000). Endoderm and heart development. D ev Dyn 217, 327-42.
    • Lyons, I., Parsons, L. M., Hartley, L., Li, R., Andrews, J. E., Robb, L., and Harvey, R. P. (1995). M yogenic and m orphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9, 1654-66.
    • Ma, Q., Zhou, B., and Pu, W. T. (2008). Reassessment o f Isll and Nkx2-5 cardiac fate maps using a G ata4-based reporter o f Cre activity. Dev Biol 323,98-104.
    • Manner, J., Perez-Pomares, J. M., M acias, D., and M unoz-Chapuli, R. (2001). The origin, formation and developm ental significance of the epicardium: a review. Cells Tissues Organs 169, 89-103.
    • Marques, S. R., Lee, Y., Poss, K. D., and Yelon, D. (2008). Reiterative roles for FGF signaling in the establishm ent o f size and proportion of the zebrafish heart. Dev Biol 321, 397-406.
    • Marques, S. R., and Yelon, D. (2009). D ifferential requirement for BMP signaling in atrial and ventricular lineages establishes cardiac cham ber proportionality. Dev Biol 328, 472-82.
    • Marvin, M. J., Di Rocco, G., Gardiner, A., Bush, S. M., and Lassar, A. B. (2001). Inhibition of W nt activity induces heart form ation from posterior mesoderm. Genes Dev 15,316-27.
    • Massague, J. (1998). TGF-beta signal transduction. Annu Rev Biochem 67, 753-91.
    • Matthews, H. K., Broders-Bondon, F., Thiery, J. P., and Mayor, R. (2008). W n tllr is required for cranial neural crest migration. D ev Dyn 237, 3404-9.
    • Mattioni, T., Louvion, J. F., and Picard, D. (1994). Regulation of protein activities by fusion to steroid binding domains. M ethods Cell Biol 43 P t A, 335-52.
    • Mereau, A., Le Sommer, C., Lerivray, H., Lesimple, M., and Hardy, S. (2007). Xenopus as a model to study alternative splicing in vivo. Biol Cell 99, 55-65.
    • Meyers, E. N., and M artin, G. R. (1999). Differences in left-right axis pathways in mouse and chick: functions o f FGF8 and SHH. Science 285,403-6.
    • Mjaatvedt, C. H., Nakaoka, T., M oreno-Rodriguez, R., Norris, R. A., Kern, M. J., Eisenberg, C. A., Turner, D., and M arkwald, R. R. (2001). The outflow tract of the heart is recruited from a novel heart-form ing field. D ev Biol 238, 97-109.
    • Mohammadi, M., M cM ahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B. K., Hubbard, S. R., and Schlessinger, J. (1997). Structures o f the tyrosine kinase domain of fibroblast growth factor receptor in com plex w ith inhibitors. Science 276, 955-60.
    • Mohun, T., Orford, R., and Shang, C. (2003). The origins of cardiac tissue in the amphibian, Xenopus laevis. Trends Cardiovasc M ed 13, 244-8.
    • Mohun, T. J., Leong, L. M., W eninger, W. J., and Sparrow, D. B. (2000). The morphology of heart developm ent in Xenopus laevis. D ev Biol 218,74-88.
    • Moorman, A. F., and Christoffels, V. M. (2003). Cardiac chamber formation: development, genes, and evolution. Physiol Rev 83, 1223-67.
    • Moretti, A., Caron, L., N akano, A., Lam, J. T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., Sasaki, M., M artin-Puig, S., Sun, Y., Evans, S. M., Laugwitz, K. L., and Chien, K. R. (2006). M ultipotent embryonic is ll+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151-65.
    • Moretti, A., Lam, J., Evans, S. M ., and Laugwitz, K. L. (2007). Biology of Isll-h cardiac progenitor cells in developm ent and disease. Cell M ol Life Sci 64, 674-82.
    • Movassagh, M., and Philpott, A. (2008). Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p2 7X icl. Cardiovasc Res 79,436-47.
    • Nascone, N., and M ercola, M. (1995). An inductive role for the endoderm in Xenopus cardiogenesis. D evelopm ent 121, 515-23.
    • Nieuwkoop, P. D. (1969). The form ation o f mesoderm in Urodelean amphibians. I. Induction by endoderm. Roux's Arch. F. Entw. Mech 162, 34-373.
    • Nieuwkoop, P. D., and Faber, J. (1994). "Normal Table o f Xenopus laevis (Daudin): a Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End o f M etam orphosis." Garland, New York,
    • Okabayashi, K., and A sashim a, M. (2003). Tissue generation from amphibian animal caps. Curr Opin G enet D ev 13, 502-7.
    • Olson, E. N. (2006). Gene regulatory networks in the evolution and development of the heart. Science 313, 1922-7.
    • Pandur, P., Lasche, M., Eisenberg, L. M., and Kuhl, M. (2002). Wnt-11 activation of a non-canonical W nt signalling pathw ay is required for cardiogenesis. Nature 418, 636-41.
    • Park, E. J., Ogden, L. A., Talbot, A., Evans, S., Cai, C. L., Black, B. L., Frank, D. U., and Moon, A. M. (2006). Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. D evelopm ent 133, 2419-33.
    • Perez-Pomares, J. M., Gonzalez-Rosa, J. M ., and M unoz-Chapuli, R. (2009). Building the vertebrate heart - an evolutionary approach to cardiac development. Int J Dev Biol 53, 1427-43.
    • Person, A. D., Klewer, S. E., and Runyan, R. B. (2005). Cell biology of cardiac cushion development. Int Rev Cytol 243, 287-335.
    • Peterkin, T., Gibson, A., Loose, M., and Patient, R. (2005). The roles of GATA-4, -5 and - 6 in vertebrate heart development. Semin Cell D ev Biol 16, 83-94.
    • Phillips, M. D., M ukhopadhyay, M., Poscablo, C., and W estphal, H. (2010). D kkl and Dkk2 regulate epicardial specification during mouse heart development. Int J Cardiol.
    • Piccolo, S., Sasai, Y., Lu, B., and De Robertis, E. M. (1996). Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589-98.
    • Pikkarainen, S., Tokola, H., Kerkela, R., and Ruskoaho, H. (2004). GATA transcription factors in the developing and adult heart. Cardiovasc Res 63, 196-207.
    • Plageman, T. F., Jr., and Yutzey, K. E. (2005). T-box genes and heart development: putting the "T" in heart. D ev Dyn 232, 11-20.
    • Prall, O. W., Menon, M. K., Solloway, M. J., W atanabe, Y., Zaffran, S., Bajolle, F., Biben, C., McBride, J. J., Robertson, B. R., Chaulet, H., Stennard, F. A., W ise, N., Schaft, D., W olstein, O., Furtado, M. B., Shiratori, H., Chien, K. R., Hamada, H., Black, B. L., Saga, Y., Robertson, E. J., Buckingham , M. E., and Harvey, R. P. (2007). An N kx2-5/Bm p2/Sm adl negative feedback loop controls heart progenitor specification and proliferation. Cell 128, 947-59.
    • Qyang, Y., M artin-Puig, S., Chiravuri, M ., Chen, S., Xu, H., Bu, L., Jiang, X., Lin, L., Granger, A., M oretti, A., Caron, L., W u, X., Clarke, J., Taketo, M. M., Laugwitz, K. L., Moon, R. T., Gruber, P., Evans, S. M ., Ding, S., and Chien, K. R. (2007). The renewal and differentiation o f Is ll+ cardiovascular progenitors are controlled by a W nt/beta-catenin pathway. Cell Stem Cell 1, 165-79.
    • Raffm, M., Leong, L. M ., Rones, M. S., Sparrow, D., M ohun, T., and Mercola, M. (2000). Subdivision o f the cardiac Nkx2.5 expression domain into myogenic and nonmyogenic com partm ents. D ev Biol 218, 326-40.
    • Ramsdell, A. F. (2005). Left-right asym m etry and congenital cardiac defects: getting to the heart o f the m atter in vertebrate left-right axis determination. Dev Biol 288, 1-20.
    • Ratajska, A., Czam ow ska, E., and Ciszek, B. (2008). Embryonic development of the proepicardium and coronary vessels. Int J D ev Biol 52, 229-36.
    • Reifers, F., W alsh, E. C., Leger, S., Stainier, D. Y., and Brand, M. (2000). Induction and differentiation o f the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). D evelopm ent 127, 225-35.
    • Rochais, F., M esbah, K., and Kelly, R. G. (2009). Signaling pathways controlling second heart field developm ent. Circ Res 104, 933-42.
    • Rojas, A., De Val, S., Heidt, A. B., Xu, S. M ., Bristow, J., and Black, B. L. (2005). Gata4 expression in lateral m esoderm is downstream of BMP4 and is activated directly by Forkhead and GA TA transcription factors through a distal enhancer element. D evelopm ent 132, 3405-17.
    • Rowning, B. A., W ells, J., W u, M., Gerhart, J. C., Moon, R. T., and Larabell, C. A. (1997). M icrotubule-m ediated transport of organelles and localization of beta-catenin to the future dorsal side o f X enopus eggs. Proc N atl A cad Sci U S A 94, 1224-9.
    • Samuel, L. J., and Latinkic, B. V. (2009). Early activation of FGF and nodal pathways mediates cardiac specification independently of W nt/beta-catenin signaling. PLoS One 4, e7650.
    • Sater, A. K., and Jacobson, A. G. (1989). The specification of heart mesoderm occurs during gastrulation in Xenopus laevis. Development 105, 821-30.
    • Sater, A. K., and Jacobson, A. G. (1990a). The restriction of the heart morphogenetic field in Xenopus laevis. D ev Biol 140, 328-36.
    • Sater, A. K., and Jacobson, A. G. (1990b). The role o f the dorsal lip in the induction of heart mesoderm in Xenopus laevis. Development 108,461-70.
    • Schier, A. F. (2003). Nodal signaling in vertebrate development. Annu Rev Cell D ev Biol 19, 589-621.
    • Schier, A. F., and Shen, M. M. (2000). Nodal signalling in vertebrate development. Nature 403, 385-9.
    • Schlueter, J., Manner, J., and Brand, T. (2006). BM P is an important regulator of proepicardial identity in the chick embryo. D ev Biol 295, 546-58.
    • Schneider, S., Steinbeisser, H., W arga, R. M., and Hausen, P. (1996). Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57, 191-8.
    • Schneider, V. A., and M ercola, M. (2001). W nt antagonism initiates cardiogenesis in Xenopus laevis. Genes D ev 15, 304-15.
    • Schulte-Merker, S., and Smith, J. C. (1995). M esoderm formation in response to Brachyury requires FGF signalling. Curr Biol 5, 62-7.
    • Schultheiss, T. M., Burch, J. B., and Lassar, A. B. (1997). A role for bone morphogenetic proteins in the induction o f cardiac myogenesis. Genes Dev 11,451-62.
    • Sedmera, D., Reckova, M., DeAlmeida, A., Coppen, S. R., Kubalak, S. W ., Gourdie, R. G., and Thompson, R. P. (2003). Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system. A nat Rec A D iscov M ol Cell Evol Biol 274, 773-7.
    • Semenov, M. V., Tamai, K., Brott, B. K., Kuhl, M., Sokol, S., and He, X. (2001). Head inducer Dickkopf-1 is a ligand for W nt coreceptor LRP6. Curr Biol 11, 951-61.
    • Sirbu, I. O., Zhao, X., and Duester, G. (2008). Retinoic acid controls heart anteroposterior patterning by down-regulating Isll through the Fgf8 pathway. Dev Dyn 231, 1627- 35.
    • Sive, H. L., Grainger, R. M., and Harland, R. M. (2000). "Early Development o f Xenopus laevis: A Laboratory M anual." Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press,
    • Slack, J. M., Darlington, B. G., Heath, J. K., and Godsave, S. F. (1987). M esoderm induction in early X enopus embryos by heparin-binding growth factors. Nature 326, 197-200.
    • Slack, J. M. W. (1991). "From Egg to Embryo: Regional Specification in Early Development." Cam bridge U niversity Press, Cambridge, UK.
    • Small, E. M., and Krieg, P. A. (2000). Expression o f atrial natriuretic factor (ANF) during Xenopus cardiac developm ent. Dev Genes Evol 210, 638-40.
    • Small, E. M., and Krieg, P. A. (2003). Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF. D ev Biol 261, 116-31.
    • Small, E. M., and Krieg, P. A. (2004). M olecular regulation of cardiac chamber-specific gene expression. Trends Cardiovasc M ed 14, 13-8.
    • Smith, J. C. (1989). M esoderm induction and mesoderm-inducing factors in early amphibian development. D evelopm ent 105, 665-77.
    • Smith, J. C. (1993). Mesoderm-inducing factors in early vertebrate development. Embo J 12,4463-70.
    • Smith, J. C., Price, B. M., Van Nimmen, K., and Huylebroeck, D. (1990). Identification of a potent Xenopus mesoderm-inducing factor as a homologue o f activin A. Nature 345,729-31.
    • Smith, K. A., Chocron, S., von der Hardt, S., de Pater, E., Soufan, A., Bussmann, J., Schulte-Merker, S., Hammerschmidt, M., and Bakkers, J. (2008). Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells. D ev Cell 14, 287-97.
    • Smith, S. J., Ataliotis, P., Kotecha, S., Towers, N., Sparrow, D. B., and M ohun, T. J. (2005). The M L C lv gene provides a transgenic marker of myocardium formation within developing chambers o f the Xenopus heart. D ev Dyn 232, 1003-12.
    • Smith, T. K., and Bader, D. M. (2007). Signals from both sides: Control o f cardiac development by the endocardium and epicardium. Semin Cell D ev Biol 18, 84-9.
    • Sokol, S., and Melton, D. A. (1991). Pre-existent pattern in Xenopus animal pole cells revealed by induction with activin. Nature 351,409-11.
    • Soufan, A. T., van den Berg, G., Ruijter, J. M., de Boer, P. A., van den Hoff, M. J., and Moorman, A. F. (2006). Regionalized sequence o f myocardial cell growth and proliferation characterizes early chamber formation. Circ Res 99, 545-52.
    • Svensson, E. C. (2010). Deciphering the signals specifying the proepicardium. Circ Res 106, 1789-90.
    • Takahashi, S., Yokota, C., Takano, K., Tanegashima, K., Onuma, Y., Goto, J., and Asashima, M. (2000). Tw o novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. D evelopm ent 127, 5319-29.
    • Tao, Q., Yokota, C., Puck, H., Kofron, M., Birsoy, B., Yan, D., Asashima, M., Wylie, C. C., Lin, X., and Heasman, J. (2005). M aternal w n tll activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857- 71.
    • Tojo, M., Hamashima, Y., Hanyu, A., Kajimoto, T., Saitoh, M., M iyazono, K., Node, M., and Imamura, T. (2005). The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer S c i96,791-800.
    • Tonissen, K. F., Drysdale, T. A., Lints, T. J., Harvey, R. P., and Krieg, P. A. (1994). XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: evidence for a conserved role in cardiac development. D ev Biol 162, 325-8.
    • Tzahor, E., and Lassar, A. B. (2001). W nt signals from the neural tube block ectopic cardiogenesis. Genes D ev 15, 255-60.
    • van den Berg, G., and M oorm an, A. F. (2009). Concepts of cardiac development in retrospect. Pediatr Cardiol 30, 580-7.
    • Vidarsson, H., Hyllner, J., and Sartipy, P. (2010). Differentiation o f human embryonic stem cells to cardiom yocytes for in vitro and in vivo applications. Stem Cell Rev 6, 108-20.
    • von Both, I., Silvestri, C., Erdem ir, T., Lickert, H., W alls, J. R., Henkelman, R. M., Rossant, J., Harvey, R. P., Attisano, L., and W rana, J. L. (2004). Foxhl is essential for development o f the anterior heart field. Dev Cell 7, 331-45.
    • Waldo, K. L., Kumiski, D. H., W allis, K. T., Stadt, H. A., Hutson, M. R., Platt, D. H., and Kirby, M. L. (2001). Conotruncal myocardium arises from a secondary heart field. Developm ent 128, 3179-88.
    • Wardle, F. C., and Smith, J. C. (2006). Transcriptional regulation of mesendoderm formation in Xenopus. Sem in Cell Dev Biol 17,99-109.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article