Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ramakrishnaiah, Ravikumar; Al kheraif, Abdulaziz Abdullah; Mohammad, Ashfaq; Divakar, Darshan Devang; Kotha, Sunil Babu; Celur, Sree Lalita; Hashem, Mohamed I.; Vallittu, Pekka K.; Rehman, Ihtesham Ur (2016)
Publisher: Elsevier
Journal: Saudi Journal of Biological Sciences
Languages: English
Types: Article
Subjects: Ti–6Al–4V, Agricultural and Biological Sciences(all), Original Article, Dental implant, Additive manufacturing technology, Electron beam melting, Biology (General), QH301-705.5

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture
The current study was aimed to fabricate customized root form dental implant using\ud additive manufacturing technique for the replacement of missing teeth. The root form dental\ud implant was designed using GeomagicTM and MagicsTM, the designed implant was directly manufactured\ud by layering technique using ARCAM A2TM electron beam melting system by employing medical\ud grade Ti–6Al–4V alloy powder. Furthermore, the fabricated implant was characterized in terms\ud of certain clinically important parameters such as surface microstructure, surface topography,\ud chemical purity and internal porosity. Results confirmed that, fabrication of customized dental implants using additive rapid manufacturing technology offers an attractive method to produce\ud extremely pure form of customized titanium dental implants, the rough and porous surface texture\ud obtained is expected to provide better initial implant stabilization and superior osseointegration.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Al-Mesmar, H.S., Morgano, S.M., Mark, L.E., 1999. Investigation of the effect of three sprue designs on the porosity and the completeness of titanium cast removable partial denture frameworks. J. Prosthet. Dent. 82, 15-21.
    • Anusavice, K.J., 2003. Casting Investments and Procedures, Phillip's Science of Dental Materials, 11th ed. Saunders, St. Louis, Missouri, pp. 295-300.
    • Bibb, R., Eggbeer, D., Robert Williams, R., 2006. Rapid manufacture of removable partial denture frameworks. Rapid Prototyping J. 12, 95-99.
    • Biemond, J.E., Aquarius, R., Verdonschot, N., Buma, P., 2011. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology. Arch. Orthop. Trauma Surg. 131, 711-718.
    • Brunette, D.M., Tengvall, P., Textor, M., Thomsen, P., 2001. Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. In: Textor, M., Sittig, C., Frauchiger, V., Tosatti, S., Brunette, D.M. (Eds.), Properties and Biological Significance of Natural Oxide Films on Titanium and its Alloys. Springer, New York, pp. 171-230.
    • Chahine, G., Koike, M., Okabe, T., Smith, P., Kovacevic, R., 2005. The design and production of Ti-6Al-4V ELI customized dental implant. J. Min. Metall. Mater. 60, 50-55.
    • De Peppo, G.M., Palmquist, A., Borchardt, P., Lenneras, M., Hyllner, J., Snis, A., Lausmaa, J., Thomsen, P., Karlsson, C., 2012. Freeform-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support THE growth of human embryonic stem cell-derived mesodermal progenitors. Sci. World J., 1-14 Article ID 646417.
    • Einstein, P.A., Harvey, D.R., Simmons, P.J., 1963. The design of an experimental electron beam melting. J. Sci. Instrum. 40.
    • Elmagrabi, N., Che Hassan, C.H., Jaharah, A.G., Shuaeib, F.M., 2008. High speed milling of Ti-6Al-4V using coated carbide tools. Eur. J. Sci. Res. 22, 153-162.
    • Farooq, W.A., Tawfik, W., Al-Mutairi, F.N., Alahmed, Z.A., 2013. Qualitative analysis and plasma characteristics of soil from a desert area using LIBS technique. J. Opt. Soc. Korean 17, 548-558.
    • Gittens, R.A., Scheideler, L., Rupp, F., Hyzy, S.L., Geis-Gerstorfer, J., Schwartz, Z., Boyan, B.D., 2014. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater. 10, 2907-2918.
    • Harbe, N.W., Heinl, P., Bordia, R.K., Korner, C., Fernandes, R.J., 2013. Maintenance of bone collagen phenotype by osteoblast-like cell in 3D periodic porous titanium (Ti-6Al-4V) structures fabricated by selective electron beam melting. Connect. Tissue Res. 10.
    • Haslauer, C.M., Springer, J.C., Harrysson, O.L., Loboa, E.G., Monteiro-Riviere, N.A., Marcellin-Little, D.J., 2010. In vitro biocompatibility of titanium alloy discs made using direct metal fabrication. Med. Eng. Phys. 32, 645-652.
    • Heinl, P., Rottmair, A., Korner, C., Singer, R.F., 2007. Cellular titanium by selective electron beam melting. Adv. Eng. Mater. 9, 360-364.
    • Heinl, P., Muller, L., Korner, C., Singer, R.F., Muller, F.A., 2008. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536-1544.
    • Jamshidiniaa, M., Wangb, L., Tongb, W., Kovacevica, R., 2014. The bio-compatible dental implant designed by using non-stochasticporosity produced by Electron Beam Melting (EBM). J. Mater. Process Technol. 214, 1728-1739.
    • Jamshidiniaa, M., Wangb, L., Tongb, W., Ajlounic, R., Kovacevica, R., 2015. Fatigue properties of a dental implant produced by electron beam melting (EBM). J. Mater. Process Technol. 226, 255- 263.
    • Jevremovic, D., Kojic, V., Bogdanovic, G., Puskar, T., Eggbeer, D., Thomas, D., Williams, R., 2011. A selective laser melted Co-Cr alloy used for the rapid manufacture of removable partial denture frameworks- initial screening of biocompatibility. J. Serb. Chem. Soc. 76, 43-52.
    • Juechter, V., Scharowsky, T., Singer, R.F., Ko¨ rner, C., 2014. Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting. Acta Mater. 76, 252-258.
    • Koike, M., Greer, P., Owen, K., Murr, L.E., Gaytan, S.M., Martinez, E., Okabe, T., 2011. Evaluation of titanium alloy fabricated using rapid prototyping technologies-electron beam melting and laser beam melting. Materials 4, 1776-1792.
    • Miguens, F.C., de Oliveira, M.L., Marins, R.V., de Lacerda, L.D., 2010. A new protocol to detect light elements in estuarine sediments by X-ray microanalysis (SEM/EDS). J. Electron Microsc. 59, 437-446.
    • Murr, L.E., Esquivel, E.V., Quinones, S.A., Gaytan, S.M., Lopez, M. I., Martinez, E.Y., Medina, F., Hernandez, D.H., Martinez, E., Martinez, J.L., Stafford, S.W., Brown, D.K., Hoppe, T., Meyers, W., Lindhe, U., Wicker, R.B., 2006. Microstructure and mechanical properties of electron beam rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Mater. Charact. 60, 96-105.
    • Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., Wicker, R.B., 2009. Microstructure and mechanical behavior of Ti6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 20-32.
    • Murr, L.E., Gaytan, S.M., Ceylan, A., Martinez, E., Martinez, L.J., Hernandez, D.H., Machado, B.I., Ramirez, D.A., Medina, F., Collins, S., Wicker, R.B., 2010. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater. 58, 1887-1894.
    • Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R., Wicker, R.B., 2012. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28, 1-14.
    • Parthasarathy, J., Starly, B., Raman, S., Christensen, A., 2010. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3, 249-259.
    • Ramakrishnaiah, R., Farooq, W.A., Al Kheraif, A.A., Qasim, S., Aldwayyan, A.S., 2012. Laser induced breakdown spectroscopic analysis of dental elastomeric impression materials. Middle East J. Sci. Res. 11, 1003-1008.
    • Rupp, F., Gittens, R.A., Scheideler, L., Marmur, A., Boyan, B.D., Schwartz, Z., Geis-Gerstorfer, J., 2014. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater. 10, 2894-2906.
    • Sabetrasekh, R., Tiainen, H., Reseland, J.E., Will, J., Ellingsen, J.E., Lyngstadaas, S.P., Haugen, H.J., 2010. Impact of trace elements on biocompatibility of titanium scaffolds. Biomed. Mater. 5, 15003.
    • Sartoretto, S.C., Alves, A.T., Resende, R.F., Calasans-Maia, J., Granjeiro, J.M., Calasans-Maia, M.D., 2015. Early osseointegration driven by the surface chemistry and wettability of dental implants. J. Appl. Oral Sci. 23, 279-287.
    • Syam, W.P., Al-Shehri, H.A., Al-Ahmari, A.M., Al-Wazzan, K.A., 2012. Preliminary fabrication of thin-wall structure of Ti6Al4V for dental restoration by electron beam melting. Rapid Prototyping J. 18, 230-240.
    • Tengvall, P., Lundstrom, I., 1992. Physico-chemical considerations of titanium as a biomaterial. Clin. Mater. 9, 115-134.
    • Wu, J., Wang, X., Zhao, X., Zhang, C., Gao, Bo., 2010. A study on the fabrication method of removable partial denture framework by computer-aided design and rapid prototyping. Rapid Prototyping J. 18, 318-323.
    • Xiao, D., Yang, Y., Su, X., Wang, D., Sun, J., 2013. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials. Bio-Med. Mater. Eng. 23, 433-445.
    • Yang, J., Cai, H., Lv, J., Zhang, K., Leng, H., Wang, Z., Liu, Z., 2014. Biomechanical and histological evaluation of roughened surface titanium screws fabricated by electron beam melting. PLoS One 9.
    • Zhao, G., Schwartz, Z., Wieland, M., Rupp, F., Geis-Gerstorfer, J., Cochran, D.L., Boyan, B.D., 2005. High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res. A 74, 49-58.
  • No related research data.
  • No similar publications.