Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Qureshi, Hammad A.
Languages: English
Types: Doctoral thesis
Subjects: RC0254

Classified by OpenAIRE into

Meningioma subtypes classification is a real world problem from the domain of histological image analysis that requires new methods for its resolution. Computerised histopathology presents a whole new set of problems and introduces new challenges in image classification. High intra-class variation and low inter-class differences in textures is often an issue in histological image analysis problems such as Meningioma subtypes classification. In this thesis, we present an adaptive wavelets based technique that adapts to the variation in the texture of meningioma samples and provides high classification accuracy results. The technique provides a mechanism for attaining an image representation consisting of various spatial frequency resolutions that represent the image and are referred to as subbands. Each subband provides different information pertaining to the texture in the image sample. Our novel method, the Adaptive Discriminant Wavelet Packet Transform (ADWPT), provides a means for selecting the most useful subbands and hence, achieves feature selection. It also provides a mechanism for ranking features based upon the discrimination power of a subband. The more discriminant a subband, the better it is for classification. The results show that high classification accuracies are obtained by selecting subbands with high discrimination power. Moreover, subbands that are more stable i.e. have a higher probability of being selected provide better classification accuracies. Stability and discrimination power have been shown to have a direct relationship with classification accuracy. Hence, ADWPT acquires a subset of subbands that provide a highly discriminant and robust set of features for Meningioma subtype classification. Classification accuracies obtained are greater than 90% for most Meningioma subtypes. Consequently, ADWPT is a robust and adaptive technique which enables it to overcome the issue of high intra-class variation by statistically selecting the most useful subbands for meningioma subtype classification. It overcomes the issue of low inter-class variation by adapting to texture samples and extracting the subbands that are best for differentiating between the various meningioma subtype textures.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [5] Perry, A., Gutmann, D., Reifenberger, G.: Molecular pathogenesis of meningiomas. Journal of neuro-oncology 70(2) (2004) 183{202
    • [6] Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N., Yener, B.: Histopathological image analysis: A review. Submitted to Medical Image Analysis (2009)
    • [7] Zbaren, P., Becker, M., Lang, H.: Staging of laryngeal cancer: Endoscopy, computed tomography and magnetic resonance versus histopathology. Europeans Archives of Oto-Rhino-Laryngology 254 (1997) S117{S122
    • [8] Adams, S., Baum, R.P., Stuckensen, T., Bitter, K., Hor, G.: Prospective comparison of 18f-fdg pet with conventional imaging modalities (ct, mri, us) in lymph node staging of head and neck cancer. Europeans Journal of Nuclear Medicine and Molecular Imaging 25 (2004) 1255{1260
    • [10] Steel, G.G.: Basic Clinical Radiobiology. Arnold, London (1997)
    • [11] Green, R.: Parallel processing in a pattern recognition based image processing systems: the abbott adc-500 di®erential counter. In: Proc. IEEE Conf. Pattern Recognit. Image Process. (1978) 492{498
    • [12] Bartels, H., Wied, G.: High resolution prescreening systems for cervical cancer, the automation of uterine cancer cytology. Tutorials of Cytology (1976) 144
    • [13] Jelonek, Stefanowski, J.: Feature subset selection for classi¯cation of histological images. Arti¯cial Intelligence in Medicine 9 (1997) 227{239
    • [14] Weaner, J., Au, J.: Application of automatic thresholding in image analysis scoring of cells in human solid tumours labeled for proliferation markers. Cytometry 29 (1997) 128{135
    • [15] Sahoo, P., Soltani, S., Wong, A.: Survey: a survey of thresholding techniques. Computer Vision Graphics Image Processing 41 (1988) 233{260
    • [16] Colley, M., Kommoss, F., Bibbo, M., Dytch, H., Frnklin, W., Holt, J., Wied, G.: Assessment of hormone receptors in breast carcinoma by immunocytochemistry and image analysis. Anal. Quant. Cytol. Histol. 11 (1989) 307{314
    • [17] Lamaziere, J., Lavallee, J., Zunino, C., Larrue, J.: Semi-quantitative study of the distribution of 2 cellular antigens by computer-directed color analysis. Lab. Invest. 68 (1993) 248{252
    • [18] Goldlust, E., Paczynski, R., He, Y., Hsu, C., Goldberg, M.: Automated measurement of infract size with scanned images of triphenyltetrazolium chloride-stained rat brains. Stroke 27 (1996) 1657{1662
    • [19] Uitto, J., Paul, J., Brockley, K., Pearce, R., Clark, J.: Elastic ¯bers in human skin: quantitation of elastic ¯bers by computerized digital analysis and determination of elastin by radioimmunoassay of desmosine. Lab. Invest. 49 (1983) 499{505
    • [21] Francis, I., Adeyanju, M., George, S., Junaid, T., Luthra, U.: Manual versus image analysis estimation of pcna in breast carcinoma. Anal. Quant. Cytol. Histol. 22 (2000) 11{16
    • [22] Ridler, T., Calvard, S.: Picture thresholding using an iterative selection method. Man Cybern. 8 (1978) 630{632
    • [23] Bond, S., Bradyaw, M., Gleesonb, F., Mortensen, N.: Image analysis for patient management in colorectal cancer. Computer Assisted Radiology and Surgery 1281 (2005) 278{283
    • [24] Ornberg, R., Woerner, B., Edwards, D.: Analysis of stained objects in histological sections by spectral imaging and di®erential absorption. J. Histochem. Cytochem. 47 (1999) 1307{1313
    • [25] Sharipo, E., Hartanto, V., Lepor, H.: Quantifying the smoothmuscle content of the prostate using double-immunoenzymatic staining and color assisted image analysis. Journal of Urology 147 (1990) 1167{1170
    • [26] Dobrinski, I., Ogawa, T., Avarbock, M.R., Brinster, R.L.: Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice. Molecular reproduction and development (1999) 142{148
    • [27] Lehr, H., der Loos, C.V., Teeling, P., Gown, A.: Complete cromogen separation and analysis in double immunohistochemical stains using photoshopbased image analysis. Journal Histochem Cytochem. 47 (1999) 199{225
    • [28] Deverell, M., J.R.Salisbury, Whimster, W.: Comparisons of stains for image segmentation and measurement of nuclear parameters by computerised image analysis using ibas 2000. Pathol. Res. Pract. 185 (1989) 555{557
    • [29] Kohlberger, P., Obermair, A., Sliutz, G., Heinzl, H., Koelbl, H., Breitenecker, G., Gitsch, G., Kainz, G.: Quantitative immunohistochemistry of factor viii-related antigen in breast carcinoma. American Journal Clinical Pathology 105 (1996) 705{710
    • [30] Gonzales, R.C., Woods, R.E.: Digital Image Processing, 2nd Edition. Prentice Hall (2002)
    • [31] Garbay, C., Brugal, G., Choquet, C.: Application of colored image analysis to bone marrow cell recognition. Anal. Quant. Cytol. 4 (1986) 272{280
    • [32] van der Laak, J., Pahlplatz, M., Hanselaar, A., de Wilde, P.: Huesaturation-density (hsd) model for stain recognition in digital images from transmitted light microscopy. Cytometry 39 (2000) 275{284
    • [33] Goto, M., Nagatomo, Y., Hasui, K., Amanaka, H., Murashima, S., Sato, E.: Chromaticity analysis of immunostained tumor specimens. Pathol. Res. Pract. 188 (1992) 433{437
    • [34] Ruifrok, A.: Quanti¯cation of immunohistochemical staining by color translation and automated thresholding. Anal. Quant. Cytol. Histol. 19 (1997) 107{113
    • [35] Zhou, R., Parker, D., Hammond, E.: Quantitative peroxidaseantiperoxidase complex-substrate mass deterimation in tissue sections by a dual wavelength method. Anal. Quant. Cytol. Histol. 14 (1992) 73{80
    • [36] Zhou, R., Hammond, E., Parker, D.: A multiple wavelength algorithm in color image analysis and its applications in stain decomposition in microscopy images. Medical Physics 23 (1996) 1977{1986
    • [37] Ong, S., Giam, S., Sinniah, R.: Adaptive window-based tracking for the detection of membrane structures in kindney electron micrographs. Machine Vision Applications 6 (1993) 215{223
    • [38] Kate, T., Belien, J., Smeulders, A., Baak, J.: Method for counting mitoses by image processing in feulgen stained breast cancer sections. Cytometry 14 (1993) 241{250
    • [39] Adiga, P.U., Chaudhri, B.: Region based techniques for segmentation of volumetric histo-pathological images. Comput. Methods Programs Biomed. 61 (2000) 23{47
    • [40] Law, A., Lam, K., Lam, F., Wong, T., Poon, J., Chan, F.: Image analysis system for assessment of immunohistochemically stained proliferative marker (mib-1) in oesophageal squamous cell carcinoma. Comput. Methods Programs Biomed 70 (2003) 37{45
    • [41] O'Gorman, L., Sanderson, A., Preston, K.: A system for automated liver tissue image analysis: methods and results. IEEE Trans. Biomed. Eng. 32 (1985) 696{706
    • [42] Jain, J., Smith, S., Backer, E.: Segmentation of muscle cell pictures: a preliminary study. IEEE Trans. Pattern Anal. Mach. Intell. 2 (1980) 232{ 242
    • [43] Adiga, P., Chaudhuri, B., Rodenacker, K.: Semi-automatic segmentation of tissue cells from confocal microscope images. In: Proceedings of 13th International Conference on Pattern Recognition. (1996)
    • [44] Mouroutis, T., Roberts, A., Bharath, A.: Robust cell nuclei segmentation using statistical modelling. Bioimaging 6 (1998) 79{91
    • [45] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. In: Proceedings of 1st International Conference on Computer Vision,. (1987) 259{268
    • [46] Fok, Y.L., Chan, J., Chin, R.: Automated analysis of nerve-cell images using active contour models. IEEE Trans. Med. Imaging 15 (1996) 353{ 368
    • [47] Zhou, P., Pycock, D.: Robust statistical models for cell image interpretation. Image Vision Computing 15 (1997) 307{316
    • [48] Yamada, H., Merritt, C., Kasvand, T.: Recognition of kidney glomerulus by dynamic programming matching method. IEEE Trans. Pattern Anal. Mach. Intell. 10 (1988) 731{737
    • [49] Wu, H., Gil, J., Barba, J.: Optimal segmentation of cell images. Image Signal Process. 145 (1998) 50{56
    • [56] Angelini, L., Antonaci, A.R., Angelis, R.D., Maceratini, R., Daniele, A., Neroni, M.: Statistical analysis of clinical breast cancer by computer. Informatics for Health and Social Care 3.2 3 (1978) 131 { 135
    • [57] Hamilton, P., Bartels, P., Thompson, D., Anderson, N., Montironi, R., Sloan, J.: Automated location of dysplastic ¯elds in colorectal histology using image texture analysis. J. Pathol. 182 (1997) 68{75
    • [58] Esgiar, A., Naguib, R., Sharif, B., Bennett, M., Murray, A.: Microscopic image analysis for quantitative measurement and feature identi¯cation of normal and cancerous colonic mucosa. IEEE Trans. Inf. Technol. Biomed. 2 (1998) 197{203
    • [59] Gilles, F., Gentile, A., Doussal, V.L., Bertrand, F., Kahn, E.: Grading of cystosarcoma phyllodes by texture analysis of tissue architecture. Anal. Quant. Cytol. Histol. 16 (1994) 95{100
    • [60] Gilles, F., Gentile, A., Doussal, V.L., Kahn, E.: Use of texture parameters in the classi¯cation of soft tissue tumours. Anal. Quant. Cytol. Histol. 16 (1994) 315{320
    • [61] Cross, S.: Fractals in pathology. J. Pathol. 182 (1997) 1{8
    • [62] Cross, S., Bury, J., Silcocks, P., Stephenson, T., Cotton, D.: Fractal geometric analysis of colorectal polyps. J. Pathol. 172 (1994) 248{262
    • [63] Cross, S., Howat, A., Stephenson, T., Cotton, D., Underwood, J.: Fractal geometric analysis of material from molar and non-molar pregnacies. J. Pathol. 173 (1994) 115{118
    • [64] Irinopoulou, T., Rigaut, J., Benson, M.: Toward objective prognostic grading of prostatic carcinoma using image analysis. Anal. Quant. Cytol. Histol. 15 (1993) 341{344
    • [65] Gibson, D., Gaydecki, P.: De¯nition and application of a fourier domain texture measure: applications to histological image analysis. Comput. Biol. Med. 25 (1995) 551{557
    • [66] Haralick, R., Shanmugan, K., Dinstein, J.: Textural features for image classi¯cation. IEEE Trans. Syst. Man Cybern. 3 (1973) 610{621
    • [67] Lessmann, B., Hans, V., Degenhard, A., Nattkemper, T.W.: Feature space exploration of pathology images using content-based database visualization. In: Proceedings SPIE Medical Imaging. (2006)
    • [68] Qureshi, H., Rajpoot, N., Wilson, R., Nattkemper, T., Hans, V.: Comparative analysis of discriminant wavelet packet features and raw image features for classi¯cation of meningioma subtypes. In: Proceedings of Medical Image Understanding and Analysis. (2007)
    • [69] Qureshi, H., Wilson, R., Rajpoot, N.: Optimal wavelet basis for wavelet packets based meningioma subtype classi¯cation. In: Proceedings 12th Medical Image Understanding and Analysis (MIUA'2008). (2008)
    • [70] Katouzian, A., Baseri, B., Konofagou, E.E., Laine, A.F.: Texture-driven coronary artery plaque characterization using wavelet packet signatures. In: ISBI, IEEE (2008) 197{200
    • [71] Jafari-Khouzani, K., Soltanian-Zadeh, H.: Multiwavelet grading of pathological images of prostate. IEEE Transactions on Biomedical Engineering 50(6) (2003) 697{704
    • [72] Ong, S., Jin, X., Jayasooriah, Sinniah, R.: Image analysis of tissue sections. Comput. Med. Biol. 26 (1996) 269{279
    • [73] Duda, R., Hart, P.: Pattern Classi¯cation and Scene Analysis. Wiley, New York (1973)
    • [74] Firestone, L.: Automated microscopy for lymph node cancer diagnosis. In: Proceedings of SPIE 1894. (1993) 15{20
    • [76] Hittelet, A., Yeaton, P., Decaestecker, C., Remmelink, M., Nagy, N., Cremer, M., Salmon, I., Kiss, R., Bourgeois, N.: Discrimination between dysplastic and malignant epithelium of the ampulla of vater based on quantitative image cytometric data. Anal. Quant. Cytol. Histol. 22 (2000) 98{106
    • [77] Amaral, T., McKenna, S.J., Robertson, K., Thompson, A.: Classi¯cation of breast-tissue microarray spots using colour and local invariants. In: ISBI. (2008) 999{1002
    • [78] Hufnagl, P., Guski, H., Wolf, G., Wenzelides, K., Martin, H., Roth, K.: The particle expert system for tumour grading by automated image analysis. Anal. Quant. Cytol. Histol. 11 (1989) 440{446
    • [79] Dawson, A., Austin, R., Weinberg, D.: Nuclear grading of breast carcinoma by image analysis. Am. J. Clin. Pathol. 95 (1991) S29{S37
    • [80] Bartels, P., Gahm, T., Thompson, D.: Automated microscopy in diagnostic histopathology from image processing to automated reasoning. Int. J. Imaging Syst. Technol. 8 (1997) 214{223
    • [81] Thompson, D., Bartels, P., Bartels, H., Hamilton, P., Sloan, J.: Knowledgeguided segmentation of colorectal histopathologic imagery. Anal. Quant. Cytol. Histol. 4 (1993) 236{246
    • [82] Thompson, D., Bartels, P., Bartel, H., Montironi, R.: Image segmentation of cribriform gland tissue. Anal. Quant. Cytol. Histol. 17 (1995) 314{322
    • [83] Bartels, P., Thompson, D., Weber, J.: Expert system in histopathology. iv. the management of uncertainty. Anal. Quant. Cytol. Histol. 14 (1992) 1{13 [86] Klencki, M., Slowinska-Klencka, D., Lewinski, A.: Multifarious system for quantitative analysis of histologic compartments. Comput. Biomed. Res. 30 (1997) 165{169 [104] Peters, T.M., Williams, J.C., Bates, J.H.T., Pike, G.B., Munger, P., eds.: The Fourier Transform in Biomedical Engineering. Springer (1998)
    • [106] Garcia-Caurel, E., Drvillon, B., Martino, A.D., Schwartz, L.: Application of fourier transform infrared ellipsometry to assess the concentration of biological molecules. Applied Optics 41 (2002) 7339{7345
    • [107] Julesz, B., Caelli, T.: On the limits of fourier decompositions in visual texture perception,. Perception 8 (1979) 1979
    • [108] Helms, H.D.: Nonrecursive digital ¯lters: design method for achieving speci¯cations of frequency response. IEEE Transactions AU-16 (1968) 336
    • [109] Campbell, F., Robson, J.: Application of fourier analysis to the visibility of gratings. Journal of Physiology (1968) 197
    • [116] Hilgevoord, J., U±nk, J.: The uncertainty principle. In Zalta, E.N., ed.: The Stanford Encyclopedia of Philosophy. Stanford (Fall 2008)
    • [117] Hubbard, B.B.: The World According to Wavelets: The Story of a Mathematical Technique in Making. A. K. Peters Ltd. (1998) [137] Qureshi, H., Sertel, O., Rajpoot, N., Wilson, R., Gurcan, M.: Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classi¯cation. In: Proceedings 11th Medical Image Computing and Computer-Assisted Intervention (MICCAI'2008). (2008)
    • [167] Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (2001) Software available at urlhttp://www.csie.ntu.edu.tw/ cjlin/libsvm.
    • [168] Jain, A., Zongker, D.: Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19(2) (1997) 153{158
    • [169] Yu, L., Liu, H.: E±cient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5 (2004) 1205{1224
    • [170] Julesz, B.: Experiments in the visual perception of texture,. Scienti¯c American (1975) 34{43
    • [171] Pollard, D.E.: A user's guide to measure theoretic probability. Cambridge University Press. (2002)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article