LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Broom, M.; Lafaye, C.; Pattni, K.; Rychtar, J. (2015)
Publisher: Springer Verlag
Languages: English
Types: Article
Subjects: QA
Recently, the study of structured populations using models of evolutionary processes on graphs has begun to incorporate a more general type of interaction between individuals, allowing multi-player games to be played among the population. In this paper, we develop a birth-death dynamics for use in such models and consider the evolution of populations for special cases of very small graphs where we can easily identify all of the population states and carry out exact analyses. To do so, we study two multi-player games, a Hawk-Dove game and a public goods game. Our focus is on finding the fixation probability of an individual from one type, cooperator or defector in the case of the public goods game, within a population of the other type. We compare this value for both games on several graphs under different parameter values and assumptions, and identify some interesting general features of our model. In particular there is a very close relationship between the fixation probability and the mean temperature, with high temperatures helping fitter individuals and punishing unfit ones and so enhancing selection, whereas low temperatures give a levelling effect which suppresses selection.

Share - Bookmark

Cite this article