Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hu, Gao; Lim, Ka S.; Horvitz, Nir; Clark, Suzanne J.; Reynolds, Don R.; Sapir, Nir; Chapman, Jason W. (2016)
Publisher: American Association for the Advancement of Science
Languages: English
Types: Article
Subjects: S1
Migrating animals have an impact on ecosystems directly via influxes of predators, prey, and competitors and indirectly by vectoring nutrients, energy, and pathogens. Although linkages between vertebrate movements and ecosystem processes have been established, the effects of mass insect "bioflows" have not been described. We quantified biomass flux over the southern United Kingdom for high-flying (>150 meters) insects and show that ~3.5 trillion insects (3200 tons of biomass) migrate above the region annually. These flows are not randomly directed in insects larger than 10 milligrams, which exploit seasonally beneficial tailwinds. Large seasonal differences in the southward versus northward transfer of biomass occur in some years, although flows were balanced over the 10 year period. Our long-term study reveals a major transport process with implications for ecosystem services, processes, and biogeochemistry.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. R. A. Holland, M. Wikelski, D. S. Wilcove, Science 313, 794-796 (2006).
    • 2. S. Hahn, S. Bauer, S. Liechti, Oikos 118, 624-626 (2009).
    • 3. J. W. Chapman et al., Science 327, 682-685 (2010).
    • 4. J. W. Chapman et al., Proc. Natl. Acad. Sci. USA 109, 14924-14929 (2012).
    • 5. J. W. Chapman, D. R. Reynolds, K. Wilson, Ecol. Lett. 18, 287-302 (2015).
    • 6. R. Kays, M. C. Crofoot, W. Jetz, M Wikelski, Science 348, aaa2478 (2015).
    • 7. E. Warrant et al., Front. Behav. Neurosci. 10, 77 (2016).
    • 8. D. S. Wilcove, M. Wikelski, PLOS Biol. 6, e188 (2008).
    • 9. K. Green, Austral Ecol. 36, 25 - 34 (2011).
    • 10. S. Bauer, B. J. Hoye, Science 344, 1242552 (2014).
    • 11. J. S. Landry, L. Parrott, Ecosphere 7, e01265 (2016).
    • 12. H. Mouritsen, D. Heyers, O. Güntürkün, Annu. Rev. Physiol. 78, 10.1-10.22 (2016).
    • 13. T. Alerstam et al., Proc. Biol. Sci. 278, 3074-3080 (2011).
    • 14. V. A. Drake, D. R. Reynolds, Radar Entomology: Observing Insect Flight and Migration (CABI, Wallingford, UK, 2012).
    • 15. See the supplementary materials and methods
    • 16. J. W. Chapman, D. R. Reynolds, A. D. Smith, E. T. Smith, I. P. Woiwod, Bull. Entomol. Res. 94, 123-136 (2004).
    • 17. C. Stefanescu et al., Ecography 36, 474-486 (2013).
    • 18. J. W. Chapman et al., Curr. Biol. 18, 514-518 (2008).
    • 19. J. W. Chapman et al., Curr. Biol. 25, R751-R752 (2015).
    • 20. J. J. Elser et al., Nature 408, 578-580 (2000).
    • 21. Ø. Varpe, Ø. Fiksen, A. Slotte, Oecologia 146, 443-451 (2005).
    • 22. J. F. Kelly, K. G. Horton, Global Ecol. Biogeogr. DOI: 10.1111/geb.12473 (2016).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article