LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chu, YH; Wang, CY; Wu, KH; Chen, KT; Tzeng, KJ; Su, CL; Feng, W; Plane, JMC (2014)
Publisher: American Geophysical Union (AGU) / Wiley
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Physics::Atmospheric and Oceanic Physics, Physics::Geophysics
On the basis of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)-measured fluctuations in the signal-to-noise ratio and excess phase of the GPS signal piercing through ionospheric sporadic E (Es) layers, the general morphologies of these layers are presented for the period from July 2006 to May 2011. It is found that the latitudinal variation in the Es layer occurrence is substantially geomagnetically controlled, most frequent in the summer hemisphere within the geomagnetic latitude region between 10° and 70° and very rare in the geomagnetic equatorial zone. Model simulations show that the summer maximum (winter minimum) in the Es layer occurrence is very likely attributed to the convergence of the Fe+ concentration flux driven by the neutral wind. In addition to seasonal and spatial distributions, the height-time variations in the Es layer occurrence in the midlatitude (>30°) region in summer and spring are primarily dominated by the semidiurnal tides, which start to appear at local time around 6 and 18-h in the height range 110-120-km and gradually descend at a rate of about 0.9-1.6-km/h. In the low-latitude (<30°) region, the diurnal tide dominates. The Horizontal Wind Model (HWM07) indicates that the height-time distribution of Es layers at middle latitude (30°-60°) is highly coincident with the zonal neutral wind shear. However, Es layer occurrences in low-latitude and equatorial regions do not correlate well with the zonal wind shear. Key Points Examination of Es layer summer maximum phenomenon Global distribution of COSMIC-retrieved Es layer Es layer formation and wind shear mechanism.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abdu, M. A., I. S. Batista, P. Muralikrishna, and J. H. A. Sobral (1996), Long term trends in sporadic E layers and electric fields over Fortaleza, Brazil, Geophys. Res. Lett., 23, 757-760.
    • Arras, C., J. Wickert, G. Beyerle, S. Heise, T. Schmid, and C. Jacobi (2008), A global climatology of ionospheric irregularities derived from GPS radio occultation, Geophys. Res. Lett., 35, L14809, doi:10.1029/2008GL034158.
    • Ritchie, S. E., and F. Honary (2009), Observations on the variability and screening effect of sporadic E, J. Atmos. Sol. Terr. Phys., 71, 1353-1364.
    • Roddy, P. A., G. D. Earle, C. M. Swenson, C. G. Carlson, and T. W. Bullett (2004), Relative concentrations of molecular and metallic ions in midlatitude intermediate and sporadic E layers, Geophys. Res. Lett., 31, L19807, doi:10.1029/2004GL020604.
    • Tsuda, T., and K. Hocke (2004), Application of GPS radio occultation data for studies of atmospheric waves in the middle atmosphere and ionosphere, J. Meteorol. Soc. Jpn., 82, 419-426.
    • Tsuda, T., M. Nishida, C. Rocken, and R. H. Ware (2000), A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET), J. Geophys. Res., 105, 7257-7273.
    • Tsunoda, R.T. (2008), On blanketing sporadic E and polarization effects near the equatorial electrojet, J. Geophys. Res., 113, A09304, doi:10.1029/2008JA013158.
    • Vondrak, T., J. M. C. Plane, S. L. Broadley, and D. Janches (2008), A chemical model of meteoric ablation, Atmos. Chem. Phys., 8, 7015-7031.
    • Wang, C. Y., Y. H. Chu, C. L. Su, R. M. Kuong, H. C. Chen, and K. F. Yang (2011), Statistical investigations of layer-type and clump-type plasma structures of 3-m field-aligned irregularities in nighttime sporadic E region made with Chung-Li VHF radar, J. Geophys. Res., 116, A12311, doi:10.1029/2011JA016696.
    • Wang, L., and M. J. Alexander (2010), Global estimates of gravity wave parameters from GPS radio occultation temperature data, J. Geophys. Res., 115, D21122, doi:10.1029/2010JD013860.
    • Whalley, C. L., J. C. G. Martin, T. G. Wright, and J. M. C. Plane (2011), A kinetic study of Mg+ and Mg-containing ions reacting with O3, O2, N2, CO2, N2O and H2O: Implications for magnesium ion chemistry in the upper atmosphere, Phys. Chem. Chem. Phys., 13, 6352-6364.
    • Whitehead, J. (1961), The formation of the sporadic E layer in the temperate zone, J. Atmos. Terr. Phys., 20, 49-58.
    • Whitehead, J. (1989), Recent work on midlatitude and equatorial sporadic E, J. Atmos. Terr. Phys., 51, 401-424.
    • Woodcock, K. R. S., T. Vondrak, S. R. Meech, and J. M. C. Plane (2006), A kinetic study of the reactions FeO+ + O, Fe+.N2 + O, Fe+.O2 + O and FeO+ + CO: Implications for sporadic E layers in the upper atmosphere, Phys. Chem. Chem. Phys., 8, 1812-1821.
    • Wu, D. L. (2006), Small-scale fluctuations and scintillations in high-resolution GPS/CHAMP SNR and phase data, J. Atmos. Sol. Terr. Phys., 68, 999-1017.
    • Wu, D. L., C. O. Ao, G. A. Hajj, M. T. Juarez, and A. J. Mannucci (2005), Sporadic E morphology from GPS-CHAMP radio occultation, J. Geophys. Res., 110, A01306, doi:10.1029/2004JA010701.
    • Yang, K. F., Y. H. Chu, C. L. Su, H. T. Ko, and C. Y. Wang (2009), An examination of FORMOSAT-3/COSMIC F peak and topside electron density measurements: Data quality criteria and comparisons with the IRI model, Terr. Atmos. Oceanic. Sci., 20, 193-206.
    • Yinn-Nien, H. (1965), Geomagnetic activity and occurrence of sporadic E in the Far East, J. Geophys. Res., 70, 1187-1194, doi:10.1029/JZ070i005p01187.
    • Zeng, Z., and S. Sokolovskiy (2010), Effect of sporadic E clouds on GPS radio occultation signals, Geophys. Res. Lett., 37, L18817, doi:10.1029/ 2010GL044561.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article